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Problem Definition

e G=(V,E) be the map of secure facility

e QObjective: Place trackers in order to
track all s-t paths

e Condition: For any 2 s-t paths P+ Po.
trackers in P1 are different from

trackers in P
sequence

e Problem: Find a minimum cardinality
Tracking Set
Decision Version: Decide if there
exists a Tracking Set of size at most
K
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? Unique Source "s" and Unique Destination "t"

2 Only simple s-t paths are considered (also no self loops, parallel edges)

? s-t path: path between source and destination

? TS: Tracking Set (solution)

» FVS: Feedback Vertex Set (set of vertices whose removal makes the
graph acyclic)

» FES: Feedback Edge Set (set of edges whose removal makes the graph

acyclic)
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Characterization of Tracking Set

L ocal source - destination

W Each subgraph consisting of at least one edge

W Tracking Paths is hereditary

.

If all paths between a local s-t in a subgraph are not tracked,
then all s-t paths in a graph are not tracked

Contains at least one local s-t
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Graph G = (V, E)
TCV Helps verify a tlracking set in
polynomial time
B u,veV
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3 two distinct paths P, P> between u and v

where

u and v are local source-destination pair
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Graph satisfying
tracking
set condition
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tracking
set condition
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The FVS connection

P'=P -P-P
P" =P, - P;- Py

2 We need a tracker in the cycle

Useful Concepts/Tools

Each cycle must have
a tracker

3k Cant we just use an FVSasa TS... ?

No
-> An FVS might just pick a local s or t

TS| > |FVS|
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Bounded Degree Graphs

Each cycle will have
a tracker
(other than local s-t)

Algorithm:

2 start with a 2-approx FVS

2 for each vertex in FVS -> Mark it and all its neighbours as trackers

0 = max degree of vertices

Recall Ny

TS| > |FVS] > | 2(6 + 1) - Approximate algorithm
— v —
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Chordal Graphs

? There will be a cycle with no trackers
» Cycle will have a ftriangle

? Triangle would have had a tracker

Tracking Paths is polynomial time
solvable for chordal graphs

— oo —

t/
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Tracking Paths .... but with Edges

Each cycle must have

a tracker
\

Problem reduces to finding a

2 An FVS might pick only a local s or t
minimum Feedback Edge Set

2 But what if we use edges as trackers... ?

2 An edge in a cycle can not be a local s or t

Tracking Paths is polynomial time
solvable when trackers are edges

SO
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Conclusion and Future Scope

Approximation for general graphs
Exploring more restricted graph classes
Exploring graphs that are few vertices away from easy restricted cases

Analysing the problem for general directed graphs
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