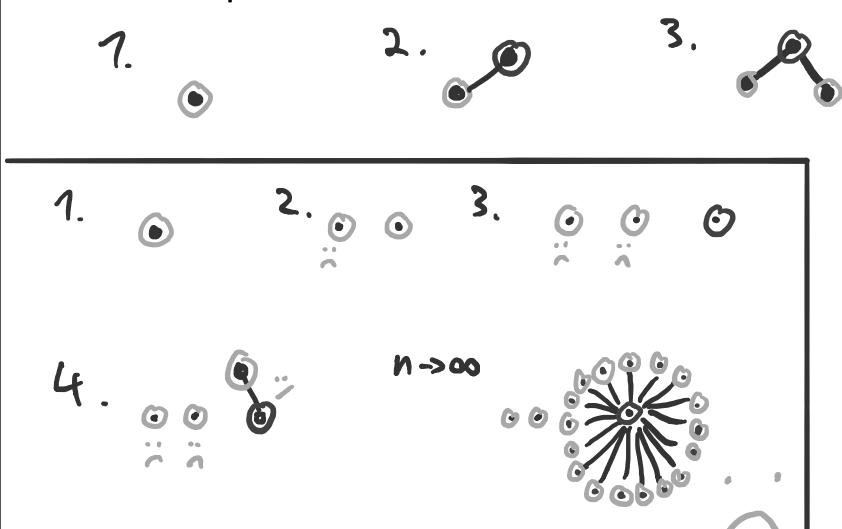
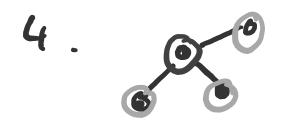
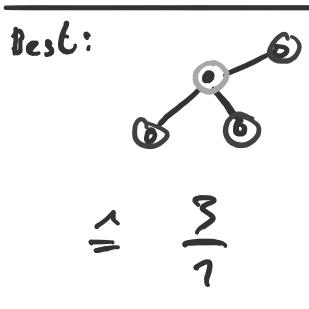
Further Results on Online Node- and Edge Deletion Problems with Advice


Li-Hsuan Chen, Ling-Ju Hung, Henri Lotze, Peter Rossmanith


Online Algorithms: A Short Recap

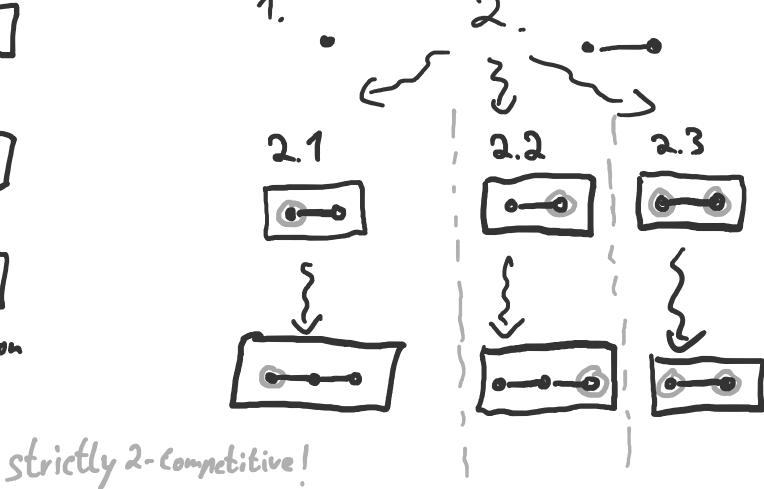

Input iterative: -> 1 -> 1 Immediate decisions: [Input] unknown:

Performance measure: (pala target fct)

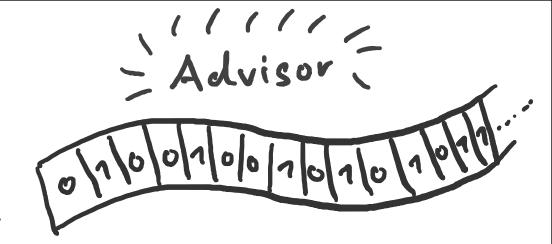
Example: Vertex Cover

Why decide anything in steps 1-3 2

Delayed Decisions Only act if necessary! 1. 2. 3.


Allowed to take Elements into solution later

Delayed Decisions: Vertex Cover Simple Lower bound: Simple Algo:



(a.k.a. 2-Approximation for Vc)

Advice Complexity

Online Algorithm + Online Problem +

sometimes not competitive :

Optimal / Good competitive ratio!

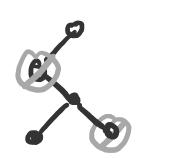
How much advice necessary/sufficient?

Online Node- and Edge Deletion

Family of graphs:

Should not be induced

1. . 2. .


3. 4.

Node-or Edge-deletion necessary!

4.19

An Overview over Problem Types

Distinctions: - Delete Nodes or Edges?

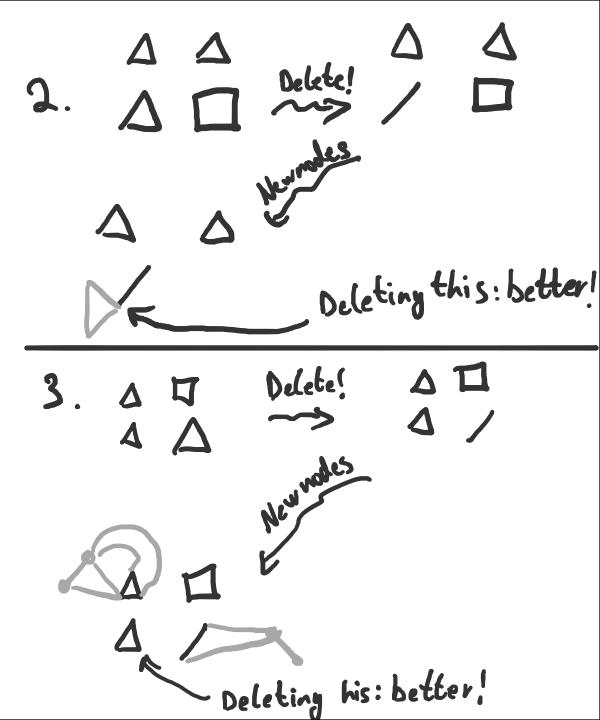
- Single graph forbidden or family?

- Graphs connected?

The Full Tables

Online Mode Deletion	Single Graph H forbidden	Family Fforbidden	Online Edge Deletion	Single Graph H forbidden	Family 3-forbidden
All Graphs connected	Ross 18	Ross 18	All Graphs connected	Ross 18	This
Arbitrary Graphs	This	?	Arbitrury Graphs	2	5

H-Node-Deletion: Sketch LB


H =
$$\Delta \Leftrightarrow \Delta \Delta$$

Enough to delebe all \square

or all but $2\Delta!$

What can an adversary do?

Problem if we delete only 1!

Results for H-Node-Deletion

Lower bound:

Theorem 1. Let H be a graph. Let C_{max} be a component of H of maximum size. Any online algorithm optimally solving the Delayed H-Node Deletion Problem uses at least $opt_H(G) \cdot \log |V(C_{max})| + (\nu_{C_{max}}(H) - 1) \cdot \log(opt_H(G))$ many advice bits on input G.

Upper bound: (not in this talk)

Theorem 2. Let H be a graph. Let $C_{min\nu} = \arg\min_{C \in C_H} \{\nu_C(G) - \nu_C(H)\}$ and $C_{min} = \arg\min_{C \in C_{min\nu}} \{|V(C)|\}$. The DELAYED H-NODE DELETION PROBLEM can be solved optimally using at most $opt_H(G) \cdot \log |V(C_{min})| + O(\log opt_H(G))$ many advice bits on input G.

Deleting Edges from Connected Graphs

Upper bound: F= { 1, 03

forbidden D

Advice: 311111

Advice complexity: A bit involved

~> & [

Theorem 3. Let $\mathcal{F} = \{H_1, \ldots, H_k\}$ be a set of connected graphs and let S_i be H_i -sound and H_i -sufficient for all $i \in \{1, \ldots, k\}$. Then there is an $m \in \mathbf{R}$ and an algorithm that solves the DELAYED CONNECTED \mathcal{F} -EDGE DELETION PROBLEM for every graph G with $m \cdot opt_{\mathcal{F}}(G) + O(1)$ many advice bits where $2^m \leq \beta(S_i)$ for all $i \in \{1, \ldots, k\}$.

Lower Bound: A Very Rough Overview

Fix a correct Algorithm A

Look at all sets of edges A has to distinguish w.r.t. &

(These sets are computable)

Theorem 5. Let $\mathcal{F} = \{H_1, \ldots, H_k\}$ be connected graphs. The advice complexity for Delayed Connected \mathcal{F} -Edge Deletion is $m \cdot opt_{\mathcal{F}}(G) + O(1)$ where $m = \max_{i \in \{1, \ldots, k\}} \min\{\log \beta(S) \mid S \subseteq 2^{E(H)}, S \text{ is } H_i\text{-sound and } H_i\text{-sufficient}\}.$ There is an algorithm that can compute m from \mathcal{F} . More specifically, there is an algorithm that gets \mathcal{F} and $t \in \mathbb{N}$ as the input and returns the tth bit of the binary representation of m.

Tight bound!