Equitable *d*-degenerate choosability of graphs join work with E. Drgas-Burchardt, E. Sidorowicz

Hanna Furmańczyk

Division of Combinatorial Optimization, Institute of Informatics University of Gdańsk, Poland

31st International Workshop on Combinatorial Algorithms IWOCA 2020

some earlier papers, eg.
Zhang, X., Equitable list point arboricity of graphs. *Filomat* (2016)

< ∃⇒

э

some earlier papers, eg.
Zhang, X., Equitable list point arboricity of graphs. *Filomat* (2016)
↓

Drgas-Burchardt, E., Dybizbański, J., Furmańczyk, H., Sidorowicz, E.: Equitable List Vertex Colourability and Arboricity of Grids. *Filomat* (2018) some earlier papers, eg.
Zhang, X., Equitable list point arboricity of graphs. *Filomat* (2016)

∜

Drgas-Burchardt, E., Dybizbański, J., Furmańczyk, H., Sidorowicz, E.: Equitable List Vertex Colourability and Arboricity of Grids. *Filomat* (2018)

 application given in: Zhang, X., Niu, B., Li, Y., Li, B.: Equitable vertex arboricity of *d*-degenerate graphs, [arxiv: 1908.05066v1] (2019)

伺下 イヨト イヨト

 decomposition into smaller pieces fulfilling some structural properties (might be helpful in identifying node failure)

- decomposition into smaller pieces fulfilling some structural properties (might be helpful in identifying node failure)
 - proper coloring \equiv the pieces are independent

- decomposition into smaller pieces fulfilling some structural properties (might be helpful in identifying node failure)
 - $\bullet\,$ proper coloring $\equiv\,$ the pieces are independent
 - arboricity \equiv the pieces are acyclic

- decomposition into smaller pieces fulfilling some structural properties (might be helpful in identifying node failure)
 - $\bullet\,$ proper coloring $\equiv\,$ the pieces are independent
 - arboricity \equiv the pieces are acyclic
 - *d*-degenerate coloring ≡ δ(H) ≤ *d* for every subgraph H of each color class

- decomposition into smaller pieces fulfilling some structural properties (might be helpful in identifying node failure)
 - $\bullet\,$ proper coloring $\equiv\,$ the pieces are independent
 - arboricity \equiv the pieces are acyclic
 - *d*-degenerate coloring ≡ δ(H) ≤ *d* for every subgraph H of each color class
- the sizes of pieces are balanced \equiv equitable coloring (it might be helpful in maintaing the network)

- decomposition into smaller pieces fulfilling some structural properties (might be helpful in identifying node failure)
 - $\bullet\,$ proper coloring $\equiv\,$ the pieces are independent
 - arboricity \equiv the pieces are acyclic
 - *d*-degenerate coloring ≡ δ(H) ≤ *d* for every subgraph H of each color class
- the sizes of pieces are balanced \equiv equitable coloring (it might be helpful in maintaing the network)
- \bullet some additional requirements on nodes \equiv list coloring

- decomposition into smaller pieces fulfilling some structural properties (might be helpful in identifying node failure)
 - proper coloring \equiv the pieces are independent
 - $\bullet\,$ arboricity $\equiv\,$ the pieces are acyclic
 - *d*-degenerate coloring $\equiv \delta(H) \leq d$ for every subgraph *H* of each color class
- the sizes of pieces are balanced \equiv equitable coloring (it might be helpful in maintaing the network)
- some additional requirements on nodes \equiv list coloring

Kostochka, A. V., Pelsmajer, M. J., West, D. B. (2003)

- decomposition into smaller pieces fulfilling some structural properties (might be helpful in identifying node failure)
 - proper coloring \equiv the pieces are independent
 - arboricity \equiv the pieces are acyclic
 - *d*-degenerate coloring $\equiv \delta(H) \leq d$ for every subgraph *H* of each color class
- the sizes of pieces are balanced \equiv equitable coloring (it might be helpful in maintaing the network)
- \bullet some additional requirements on nodes \equiv list coloring

Zhang, X. (2016)

What we consider?

- decomposition into smaller pieces fulfilling some structural properties (might be helpful in identifying node failure)
 - $\bullet\,$ proper coloring $\equiv\,$ the pieces are independent
 - $\bullet\,$ arboricity $\equiv\,$ the pieces are acyclic
 - *d*-degenerate coloring ≡ δ(H) ≤ d for every subgraph H of each color class

- the sizes of pieces are balanced \equiv equitable coloring (it might be helpful in maintaing the network)
- some additional requirements on nodes \equiv list coloring

What we consider?

- decomposition into smaller pieces fulfilling some structural properties (might be helpful in identifying node failure)
 - $\bullet\,$ proper coloring $\equiv\,$ the pieces are independent
 - $\bullet\,$ arboricity $\equiv\,$ the pieces are acyclic
 - *d*-degenerate coloring ≡ δ(H) ≤ d for every subgraph H of each color class
 - proper coloring \equiv 0-degenerate coloring
- the sizes of pieces are balanced ≡ equitable coloring (it might be helpful in maintaing the network)
- some additional requirements on nodes \equiv list coloring

What we consider?

- decomposition into smaller pieces fulfilling some structural properties (might be helpful in identifying node failure)
 - $\bullet\,$ proper coloring $\equiv\,$ the pieces are independent
 - $\bullet\,$ arboricity $\equiv\,$ the pieces are acyclic
 - *d*-degenerate coloring ≡ δ(H) ≤ d for every subgraph H of each color class
 - proper coloring \equiv 0-degenerate coloring
 - acyclic coloring \equiv 1-degenerate coloring
- the sizes of pieces are balanced ≡ equitable coloring (it might be helpful in maintaing the network)
- some additional requirements on nodes \equiv list coloring

• G is d-degenerate if $\delta(H) \leq d$ for any subgraph H of G,

< ∃⇒

э

- G is *d*-degenerate if $\delta(H) \leq d$ for any subgraph H of G,
- \mathcal{D}_d the class of all *d*-degenerate graphs,

- G is d-degenerate if $\delta(H) \leq d$ for any subgraph H of G,
- \mathcal{D}_d the class of all *d*-degenerate graphs,
- *D_d*-coloring: c : V(G) → N such that for each i ∈ N the set of vertices coloured with i induces a d-degenerate graph

- G is d-degenerate if $\delta(H) \leq d$ for any subgraph H of G,
- \mathcal{D}_d the class of all *d*-degenerate graphs,
- *D_d-coloring*: c : V(G) → N such that for each i ∈ N the set of vertices coloured with i induces a d-degenerate graph
- list assignment L: a mapping that assigns a nonempty subset of N to each vertex v ∈ V(G); given k ∈ N, a list assignment L is k-uniform if |L(v)| = k for every v ∈ V(G),

(L, \mathcal{D}_d) -colourability

Given $d \in \mathbb{N}_0$, a graph G is (L, \mathcal{D}_d) -colourable if there exists a colouring $c : V(G) \to \mathbb{N}$, such that $c(v) \in L(v)$ for each $v \in V(G)$, and for each $i \in \mathbb{N}$ the set of vertices coloured with i induces a d-degenerate graph.

(L, \mathcal{D}_d) -colourability

Given $d \in \mathbb{N}_0$, a graph G is (L, \mathcal{D}_d) -colourable if there exists a colouring $c : V(G) \to \mathbb{N}$, such that $c(v) \in L(v)$ for each $v \in V(G)$, and for each $i \in \mathbb{N}$ the set of vertices coloured with i induces a d-degenerate graph.

Equitable (k, \mathcal{D}_d) -choosability

Given $k \in \mathbb{N}$ and $d \in \mathbb{N}_0$, a graph G is *equitably* (k, \mathcal{D}_d) -choosable if for any k-uniform list assignment L there is an (L, \mathcal{D}_d) -colouring of G such that the size of any colour class $\leq \lceil |V(G)|/k \rceil$.

Definition

Let $k, d \in \mathbb{N}$. A partition $S_1 \cup \cdots \cup S_{\eta+1}$ of V(G) is called a (k, d)-partition of G if $|S_1| \leq k$, and $|S_j| = k$ for $j \in \{2, \ldots, \eta + 1\}$, and for each j, there is such an ordering $\{x_1^j, \ldots, x_k^j\}$ of vertices of S_j that

$$|N_G(x_i^j) \cap (S_1 \cup \cdots \cup S_{j-1})| \le di-1, \qquad i \in [k].$$

Definition

Let
$$k, d \in \mathbb{N}$$
. A partition $S_1 \cup \cdots \cup S_{\eta+1}$ of $V(G)$ is called a (k, d) -partition of G if $|S_1| \leq k$, and $|S_j| = k$ for $j \in \{2, \ldots, \eta + 1\}$, and for each j , there is such an ordering $\{x_1^j, \ldots, x_k^j\}$ of vertices of S_j that

$$|N_G(x_i^j) \cap (S_1 \cup \cdots \cup S_{j-1})| \le di-1, \qquad i \in [k].$$

Some observation

• each (k, d)-partition of G is also its (k, d + 1)-partition,

伺 ト イヨト イヨト

э

Definition

Let
$$k, d \in \mathbb{N}$$
. A partition $S_1 \cup \cdots \cup S_{\eta+1}$ of $V(G)$ is called a (k, d) -partition of G if $|S_1| \leq k$, and $|S_j| = k$ for $j \in \{2, \ldots, \eta + 1\}$, and for each j , there is such an ordering $\{x_1^j, \ldots, x_k^j\}$ of vertices of S_j that

$$|N_G(x_i^j) \cap (S_1 \cup \cdots \cup S_{j-1})| \le di-1, \qquad i \in [k].$$

Some observation

- each (k, d)-partition of G is also its (k, d + 1)-partition,
- if G has a (k, d)-partition, then G may have neither a (k + 1, d)-partition nor a (k 1, d)-partition (cf. Example 1)

Theorem 1

Let $k, d, t \in \mathbb{N}$ and $t \ge k$. If a graph G has a (k, d)-partition, then it is equitably (t, \mathcal{D}_{d-1}) -choosable.

Theorem 1

Let $k, d, t \in \mathbb{N}$ and $t \ge k$. If a graph G has a (k, d)-partition, then it is equitably (t, \mathcal{D}_{d-1}) -choosable.

Theorem 2

There is a polynomial-time algorithm that for any graph with a given (k, d)-partition and for any *t*-uniform list assignment *L* returns an equitable (L, \mathcal{D}_{d-1}) -colouring of *G*.

Proposition (generalization from (k, D_0) - and (k, D_1) -choosability)

Let $k, d \in \mathbb{N}$ and let S be a set of distinct vertices x_1, \ldots, x_k of a graph G. If G - S is equitably (k, \mathcal{D}_{d-1}) -choosable and

 $|N_G(x_i) \setminus S| \leq di - 1$

holds for every $i \in [k]$, then G is equitably (k, \mathcal{D}_{d-1}) -choosable.

Proposition (generalization from (k, \mathcal{D}_0) - and (k, \mathcal{D}_1) -choosability)

Let $k, d \in \mathbb{N}$ and let S be a set of distinct vertices x_1, \ldots, x_k of a graph G. If G - S is equitably (k, \mathcal{D}_{d-1}) -choosable and

 $|N_G(x_i) \setminus S| \leq di - 1$

holds for every $i \in [k]$, then G is equitably (k, \mathcal{D}_{d-1}) -choosable.

Some observations

• if G has a (k, d)-partition, then G is eq. (k, \mathcal{D}_{d-1}) -choosable,

Proposition (generalization from (k, D_0) - and (k, D_1) -choosability)

Let $k, d \in \mathbb{N}$ and let S be a set of distinct vertices x_1, \ldots, x_k of a graph G. If G - S is equitably (k, \mathcal{D}_{d-1}) -choosable and

 $|N_G(x_i) \setminus S| \leq di - 1$

holds for every $i \in [k]$, then G is equitably (k, \mathcal{D}_{d-1}) -choosable.

Some observations

- if G has a (k, d)-partition, then G is eq. (k, \mathcal{D}_{d-1}) -choosable,
- the equitable (k, \mathcal{D}_{d-1}) -choosability of G does not imply the equitable (t, \mathcal{D}_{d-1}) -choosability of G for $t \ge k$

- A 同 N - A 三 N - A 三 N

Theorem 1

Let $k, d, t \in \mathbb{N}$ and $t \ge k$. If a graph G has a (k, d)-partition, then it is equitably (t, \mathcal{D}_{d-1}) -choosable.

Theorem 2

There is a polynomial-time algorithm that for any graph with a given (k, d)-partition and for any *t*-uniform list assignment *L* returns an equitable (L, \mathcal{D}_{d-1}) -colouring of *G*.

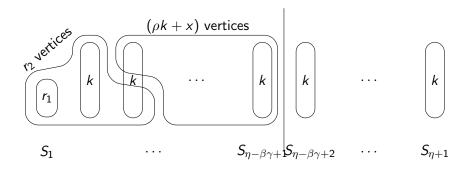
Algorithm 1: Equitable (L, \mathcal{D}_{d-1}) -colouring(G)

Input : Graph G on n vertices; L - t-uniform list assignment; a (k, d)-partition $S_1 \cup \cdots \cup S_{\eta+1}$ of G, given by lists $S_1 = (x_1^1, \ldots, x_{r_1}^1)$ and $S_j = (x_1^j, \ldots, x_k^j)$ for $j = 2, \ldots$ Output: Equitable (L, \mathcal{D}_{d-1}) -colouring of G

伺下 イヨト イヨト

1 for j := 1 to $\eta + 1$ do 2 add REVERSE(S_i) to S_i ; 3 end 4 • • • 5 $\gamma := t \div k$; $r := t \pmod{k}$; $\rho := \beta r \div k$; $x := \beta r \pmod{k}$; 6 take and delete r_2 elements from the beginning of S, and add them to L_R ; 7 COLOUR LIST (L_R, r_2) ; 8 take and delete x elements from the beginning of S, and add them to L_X ; 9 COLOUR LIST (L_X, x) ; 10 $S_{col} := L_X$: 11 for i = 1 to ρ do take and delete k elements from the beginning of S, and add to S'; 12 COLOUR LIST(S', k); 13 $S_{col} := S_{col} + S'$: 14 15 end 16 REORDER(S_{col}); 17 $\overline{S} := S$; MODIFY COLOURLISTS (S_{col}, \overline{S}) ; 18 COLOUR LIST $(S, \gamma k)$;

周 ト イ ヨ ト イ ヨ ト



$$|V(G)| = \eta k + r_1$$
$$|V(G)| = \beta t + r_2, \quad 0 < r_2 \le t$$
$$|V(G)| = \beta \gamma k + (\rho k + x) + r_2$$

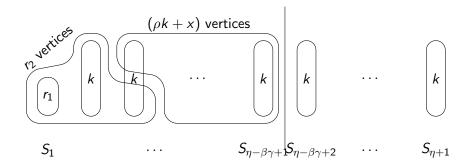
2

æ

• we create the list S, consisting of the elements from V(G), whose order corresponds to the order in which the colouring is expanded to successive vertices in each S_i (Prop. 1)

- we create the list *S*, consisting of the elements from *V*(*G*), whose order corresponds to the order in which the colouring is expanded to successive vertices in each *S_j* (Prop. 1)
- we colour r_2 vertices from the beginning of S taking into account the lists of available colours; we delete the colour assigned to v from the lists of available colours for vertices from $N_G^{col}(d, v)$ $(\{w \in N_G(v) : w \text{ has } d \text{ neighbors coloured with } c(v)\})$

(in consequence we have r_2 rainbow colored vertices)



 $|V(G)| = \eta k + r_1$ $|V(G)| = \beta t + r_2, \quad 0 < r_2 \le t$ $r := t \mod k$ $|V(G)| = \beta \gamma k + (\rho k + x) + r_2$

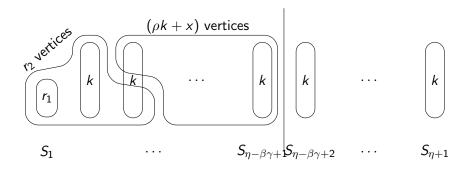
< ∃ >

A 1

-

э

 we colour ρk + x vertices taking into account the lists of available colours in such a way that every sublist of length k is formed by vertices coloured differently (consequently, every sublist of length r is coloured differently); we divide the vertices colored here into β sets each one of cardinality r; we delete c(v) from the lists of vertices from N^{col}_G(d, v);



$$|V(G)| = \eta k + r_1$$
$$|V(G)| = \beta t + r_2, \quad 0 < r_2 \le t$$
$$|V(G)| = \beta \gamma k + (\rho k + x) + r_2$$

2

æ

 we extend the list colouring into the uncoloured βγk vertices by colouring β groups of γk vertices; first, we associate each group of γk vertices with a set of r vertices coloured in the previous step (for different groups these sets are disjoint); next, we color the vertices of each of the group using γk different colors that are also different from the colors of r vertices of the set associated with this group;

- we extend the list colouring into the uncoloured βγk vertices by colouring β groups of γk vertices; first, we associate each group of γk vertices with a set of r vertices coloured in the previous step (for different groups these sets are disjoint); next, we color the vertices of each of the group using γk different colors that are also different from the colors of r vertices of the set associated with this group;
- our final equitable list colouring is the consequence of a partition of V(G) into β + 1 coloured sets, each one of size at most t and each one formed by vertices coloured differently.

For a given graph G on n vertices, a t-uniform list assignment L, a (k, d))-partition of G the EQUITABLE (L, \mathcal{D}_{d-1}) -COLOURING(G) algorithm returns (L, \mathcal{D}_{d-1}) -colouring of G in $O(n\Delta^2(G))$ time.

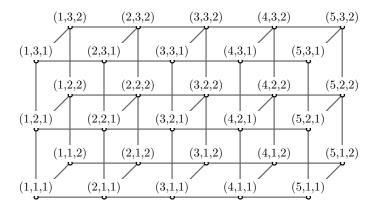
How to check whether G has (k, d)-partition?

A 1

2

∃ ► < ∃ ►</p>

Application to 3-dimensional grids



Grid $P_5 \Box P_3 \Box P_2$.

э

э

For a given 3-dimensional grid G the PARTITION3D(G) algorithm returns a (3, 2)-partition of G in polynomial-time.

4 E b

For a given 3-dimensional grid G the PARTITION3D(G) algorithm returns a (3, 2)-partition of G in polynomial-time.

Algorithm 3: Partition3d(*G*)

Input : 3-dimensional grid $G = P_{n_1} \Box P_{n_2} \Box P_{n_3}$. **Output:** A (3,2)-partition $S_1 \cup \cdots \cup S_{\alpha+1}$ of G.

For a given 3-dimensional grid G the PARTITION3D(G) algorithm returns a (3, 2)-partition of G in polynomial-time.

Algorithm 4: Partition3d(*G*)

Input : 3-dimensional grid $G = P_{n_1} \Box P_{n_2} \Box P_{n_3}$. **Output:** A (3,2)-partition $S_1 \cup \cdots \cup S_{\alpha+1}$ of G.

(3,2)-partition of G:

 $S_1 \cup \cdots \cup S_{\eta+1}$, $|S_1| \leq 3$, and $|S_j| = 3$ for $j \in \{2, \ldots, \eta + 1\}$, and for each j, there is such an ordering $\{x_1^j, x_2^j, x_3^j\}$ of vertices of S_j that

$$N_G(x_i^j) \cap (S_1 \cup \cdots \cup S_{j-1})| \leq 2i-1, \qquad i \in [3].$$

(4月) (4日) (4日)

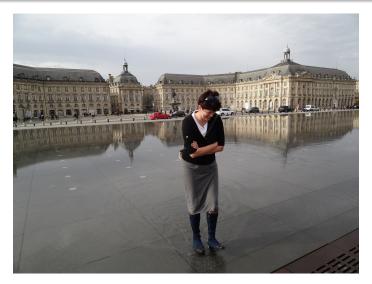
Let $t \ge 3$ be an integer. Every 3-dimensional grid is equitably (t, \mathcal{D}_1) -choosable. Moreover, there is a polynomial-time algorithm that for every *t*-uniform list assignment *L* of the 3-dimensional grid *G* returns an equitable (L, \mathcal{D}_1) -colouring of *G*.

• What is the complexity of recognition of graphs having a (k, d)-partition?

∃ ► < ∃ ►</p>

э

- What is the complexity of recognition of graphs having a (k, d)-partition?
- What is the parameterized complexity of the problem of EQUITABLE (L, D_d) -CHOOSABILITY in respect to different parameters?



Thank you for your attention hanna.furmanczyk@ug.edu.pl