Efficient Large-Scale Optimization
by Population

Dan Alistarh
IST Austria

The Plan for Today

1. A Quick Introduction to Population Protocols

2. The Scaling Challenge in Distributed Machine Learning

3. Large-Scale Optimization via Population Protocols

What are Population Protocols?

A model for large-scale
decentralized distributed computation.

Three ingredients:
* Nodes
* Communication
* Computation

Computational Model
Population Protocols [AADFP’04, Dijkstra Award 2020] d

* Nodes are simple, identical agents
e Each node is an anonymous finite state automaton
e E.g., amolecule or a cell

* Interactions are pairwise, and follow a fair scheduler
 Communication graph is fully connected (clique)
e At each step, an edge chosen uniformly at random (“well-mixed solution”)
* Nodes update their state following interactions

* Computation is performed collectively

* The system should converge to configurations
satisfying meaningful predicates on the input

* No “fixed” decision time

A.k.a. Chemical Reaction Networks, Petri Net varieties

Complexity Measures

1. Time Complexity

* Step = a single pair interacts
* Chosen uniformly at random

* Parallel convergence time
* #rounds to convergence / # nodes
* Alternative continuous-time definition exists

2. Space Complexity

* Number of distinct states per automaton @fa\@
H : ~
* Alternatively, #memory bits to encode state \ b \
OWO

Implementable!

Courtesy of the Microsoft Research Biological Computation Group

What can they compute?

We can perform interactions of the type: ° ﬁ e
Example: the OR function e G

e Initial states: 0 or 1

* Final state:
* |f there exists a 1, then all 1.
* Otherwise, all 0

* Protocol:
-0 ©0:-0
U 4

GEG 030
© ©O ®© O O 0 0 ©

Can they compute anything interesting?

Theorem [AADFP]: The set of predicates computable by a population

protocol is exactly the set of predicates expressible in Presburger arithmetic.

Majority (“Consensus”)
* Initial states A, B

* Output:
« Aif #A > #B initially.
* B, otherwise.

e Fundamental task
* Complexity: [AAEOS8] & [DV12]; [PVV09] & [MNRS14]

* Natural computation:
the cell cycle switch implements approximate majority [CC12]

* Implementation in DNA: [CDS*13, Nature Nanotechnology]

Solving Majority o O
© O

4-State Exact Majority [PVV09] [MNRS14]

* Protocol:

N)
Discrepancy/margin: {

e=|#A-#B| /n

Can be as small as
e=0(1/n).

Theorem [Draief & Vojnovic '12]: Given n nodes and discrepancy &,

the parallel running time of 4EM is O((log n) / €).

Think of n =6.023 x 10%3. Can be ©(n log n) parallel time if € = constant / n.

The State of Majority

4-State Exact Majority 4 Super-linearinn
[PVV09, MNRS14]

[MNRS14] 3 Q)

The State of Majority

4-State Exact Majority 4 Super-linearinn
[PVV09, MNRS14]
[MNRS14] 3 Q(n)
Average-and-Conquer Ct. O(polylog n)
[AGV15] €

[AGV15] 4 Qn)

The State of Majority

4-State Exact Majority 4 Super-linearinn
[PVV09, MNRS14]
[MNRS14] 3 Q(n) simplified &
Average-and-Conquer Ct. O(polylog n) Improved to
[AGV15]) 0(log?n) by
Berenbrink et al.,
[AGV15] 4 Q(n) 2017
Split-Join Algorithm O(log?n) O(log3n)
[AAEGR17]
[AAEGR17] < 1/2(loglogn) a (n)
polylog n

The State of Majority

4-State Exact Majority 4 Super-linear in n
[PVV09, MNRS14]
[MNRS14] 3 Q(n) Simplified &
Average-and-Conquer Ct. O(polylog n) Improved to
[AGV15]) 0(log?n) by
Berenbrink et al.,
[AGV15] 4 Q(n) 2017
Split-Join Algorithm O(log?n) O(log3n)
[AAEGR17]
[AAEGR17] < 1/2(loglogn) Q(n)
polylog n
[AAG18] O(logn) O (log?n)

[BKKP20] O(logn) O(log*?n)

Taking a Step Back

Population Protocols Induce Non-Trivial
Space-Time Trade-Offs

* Another good example: Leader Election [AAEGR17], [BGK20]
* Time bound: ® (log n); Space bound: ® (log log n)

* Interesting model of extremely large-scale parallelism

Can we apply them to anything else that’s interesting?

The Plan for Today

2. The Scaling Challenge in Distributed Machine Learning

3. Large-Scale Optimization via Population Protocols

The Machine Learning “Cambrian Explosion”

CAT, DOG, DUCK

Image Classification
& Segmentation

Speech Recognition Strategic Games
& Translation (Reinforcement Learning)

existing technologies already have significant industry adoption.

Machine Learning is here to stay:

Three Factors

Google Cloud Platform

sndiog pJeagqcuMs ui so

Yoshua Bengio Geoffrey Hinton Yann LeCun

Great Ideas High Quaiity Data Efficient Computation

Distributed/parallel computing is the key enabler
of computational speedups.

IMAGE
Distribution is Key

Training Deep Neural Networks Efficiently

* Large Datasets:

* ImageNet: 1.3 Million images
Google Openlmages: 9 Million images

* NIST2000 Switchboard dataset: 2000 hours
Proprietary speech datasets: > 30.000 hours (3.5 years)

» Distributed training is necessary

* Large Models:
* ResNet-152 [He et al. 2015]: 152 layers, 60 million parameters
 LACEA [Yu et al. 2016]: 22 layers, 65 million parameters

iiiii

3333333333

|s efficient distributed machine learning a solved problem?

The Scalability Problem

CSCS: Europe’s Top Supercomputer (World 4th)
* 4500+ GPU Nodes, state-of-the-art interconnect
Task:

* |Image Classification (ResNet-152 on ImageNet)
* Single Node time (TensorFlow): 19 days
1024 Nodes: 25 minutes (in theory)

The Scalability Problem

CSCS: Europe’s Top Supercomputer (World 4t")
4500+ GPU Nodes, state-of-the-art interconnect

Task:

* |Image Classification (ResNet-152 on ImageNet)
* Single Node time (TensorFlow): 19 days
1024 Nodes: 25 minutes (in theory)
Time to Train Model

12

9.6 days
- Communication

- Computation

I Imlm-m-“l

Number of GPU Nodes

10

8

Days

N

The Scalability Problem

CSCS: Europe’s Top Supercomputer (World 4th)
4500+ GPU Nodes, state-of-the-art interconnect
Task:
Image Classification (ResNet-152 on ImageNet)
Single Node time (TensorFlow): 19 days

1024 Nodes: 25 minutes (in theory)

Time to Train Model

- Communication
- Computation

Efficient distribution is still a non-trivial cha
for machine learning applications.

90%

M Communication

and
Synchronization

10%
Computation

22

The Algorithm: Parallel Stochastic Gradient Descent

Synchronous Message-Passing System
* n nodes, fully-connected communication topology

Compute Average Update

' update updates model ,
= - | 1 N 1 B | I
—— : I I
= | I | I | I
—— ! I
= | | I | | I | | I
| | | N | I | | I

iRound 1 (milliseconds) iRound 2 'Round 3

Parallel SGD (large models)

Synchronous Message-Passing System
* n nodes, fully-connected communication topology

Compute Average Update

. update updates model
Ca - | I_- |
‘ —i | I |
-i | I |
Ci | I N |

' Round 1 ' Round 2

Parallel SGD (large models and high node counts)

Synchronous Message-Passing System
* n nodes, fully-connected communication topology

- Compute Average Update
. update updates model |
- | I

1D o [

iRound 1 (milliseconds) iRound 2

The Plan for Today

3. Large-Scale Optimization via Population Protocols

The General Setting

Given:
* n nodes, message-passing, fully-connected topology
* Dataset D: node p, is assigned dataset partition D;
 Loss function Loss(x, e) = how “good” is the prediction of model x on example e

Wanted: S
model x minimizing f(x) = f(x) + f,(x)

fl(x) = Ee from D1 [LOSS(XI e)] fZ(x) = Ee from D2 [LOSS(X; e)]

Q > B

— Communication /
Synchronization Cost

Dataset
Partition D,

Dataset
Partition D,

he Classic Algorithm: Stochastic Gradient Descent

* Each node maintains a copy of the “model/parameter” x

* In each iteration t, until convergence:
* Each node i selects a sample e;uniformly at random from D;
* It computes the update V,! = the gradient of x, at e; w.r.t. the Loss
* Nodes average their updates: V, = (V,1 + V,2)/2
* Update model: x;,1= x; — n.V,, where n, is the learning rate.

! Vi 2
xt’ﬁa t < Synchronization > Ve —

Dataset
Partition D,

Xe+1

Dataset
Partition D,

Example: Distributed Mean Estimation

* Given distribution D, find a parameter x € R? which minimizes
EeinD [“X o e”Z]_

* In each iteration t until convergence:
* Each node i selects a sample e; uniformly at random from its local set
* It computes the gradient of its estimate V,! = e; — xt

* Nodes average their gradients to obtain V, = (e + e,)/2 — xt,
and update their estimates by x;,1=x; — n,V,.

The SGD algorithm remains roughly the same whether we are optimizing
complex neural networks or solving classic regression.

. N | — L'

Why does averaging / parallelism help?

Intuition: two random samples are better than one! Can we leverage populations to optimize faster?

PopSGD: Distributed Optimization in a Population

The issue: in a population, the “model” x; can no longer be consistent!
Interactions are pairwise:

For each interaction between < i,j >:
* Each node i has its own estimate (“model”) x,!
Xl'p1= X'y — WV,
Xep1= X —n VY
* If i and j meet, they take an update step and then
average their estimates:

Xho1= M= (X+20) /2 = (Vi+ V) /2

Does this still converge? Does it yield any speedup?
Note: similar algorithms considered for mean estimation via gossip [BGPS06].

A High-Level View of the Analysis

Theorem [informal]: For convex objective functions f, given large enough
#fiterations T, the PopSGD algorithm converges n times faster than SGD.

Ensured by
averaging

* We keep track of the mean of the models: O\

n .}) .
”t= Z xit \\\?\—_//7}
* Step 1: Show that the models themselves stay resilience

concentrated around u;
* A multi-dimensional load-balancing process!

* Step 2: SGD is resilient to gradients being taken at
noisy versions of u;

* Despite noise, its convergence is still proportional to the OPTIMUM
total number of steps taken by the entire population

Discussion

Theorem [informal]: For convex objective functions f, given large enough
#fiterations T, the PopSGD algorithm converges n times faster than SGD.

Limitations: O\ Ensured by

. . . ! . averaging
* We are ignoring space / Mmessage compIeX|ty ? f

* The number of SGD iterations has to be large \ /
enough to hide the overhead of mixing resilience

 Gradients assumed to be bounded

Is this result practically relevant?

OPTIMUM

Experimental Setup

* We train large-scale residual neural networks
* Image classification on ILSVRC 2012 and CIFAR-10 datasets

* On the Piz Daint Supercomputer
* Each node is equipped with a state-of-the-art CPU and GPU

* Two major questions:
* Can PopSGD recover accuracy?
e Can PopSGD scale to lots of nodes?

Question 1: Accuracy

* Training the ResNet18 network on ImageNet

* 32 nodes, accuracy vs. steps

Train accuracy

Accuracy (%)

20 4 - pof sssss 2

T T T T T T
0 10000 20000 30000 40000 50000
Steps

Accuracy (%)

Test accuracy

—e— popsgd-3 2

T T T T T T
0 10000 20000 30000 40000 50000
Steps

PopSGD can match or exceed the baseline accuracy.

Question 2: Speed

* Training the ResNet18 network on ImageNet

* 16-64 nodes, total samples (tokens) processed per second
* Versus state-of-the-art distribution techniques [PSGD, LocalSGD, AD-PSGD, SGP]

200000~
local SGD

% 160000 B Allreduce SGD
@ AD-PSGD
Qo BscpP
8,120000- .l PopSGD
5
I
S 80000-
)
o
L
— 40000-

...and it can do it faster than previous techniques.

The Power of the “Right” Model

1. Population Protocols are a minimalistic model of
large-scale distributed computing

2. They raise fundamental algorithmic questions, but can
also model non-trivial practical settings

3. Example: Large-Scale Optimization by Populations

4. Lots of open questions!

Questions?

