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The Plan for Today

1. A Quick Introduction to Population Protocols

2. The Scaling Challenge in Distributed Machine Learning

3. Large-Scale Optimization via Population Protocols



What are Population Protocols?

Three ingredients:
•Nodes

•Communication
•Computation

A model for large-scale 
decentralized distributed computation.



Computational Model
Population Protocols [AADFP’04, Dijkstra Award 2020]

• Nodes are simple, identical agents
• Each node is an anonymous finite state automaton
• E.g., a molecule or a cell

• Interactions are pairwise, and follow a fair scheduler 
• Communication graph is fully connected (clique)
• At each step, an edge chosen uniformly at random (“well-mixed solution”)
• Nodes update their state following interactions

• Computation is performed collectively
• The system should converge to configurations 

satisfying meaningful predicates on the input
• No “fixed” decision time

• A.k.a. Chemical Reaction Networks, Petri Net varieties



Complexity Measures

1. Time Complexity
• Step = a single pair interacts 

• Chosen uniformly at random

• Parallel convergence time
• #rounds to convergence / # nodes
• Alternative continuous-time definition exists

2.  Space Complexity
• Number of distinct states per automaton
• Alternatively, #memory bits to encode state



Implementable!

Courtesy of the Microsoft Research Biological Computation Group



What can they compute?
We can perform interactions of the type:
Example: the OR function
• Initial states: 0 or 1
• Final state: 

• If there exists a 1, then all 1. 
• Otherwise, all 0

• Protocol: 
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Can they compute anything interesting?
Theorem [AADFP]: The set of predicates computable by a population 

protocol is exactly the set of predicates expressible in Presburger arithmetic.

Majority (“Consensus”) 
• Initial states A, B
• Output: 
• A if #A > #B initially. 
• B, otherwise.

• Fundamental task
• Complexity: [AAE08] & [DV12]; [PVV09] & [MNRS14]
• Natural computation:  

the cell cycle switch implements approximate majority [CC12]
• Implementation in DNA: [CDS+13, Nature Nanotechnology]



Solving Majority
4-State Exact Majority [PVV09] [MNRS14]

• Protocol:
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Theorem [Draief & Vojnovic ’12]: Given n nodes and discrepancy ε, 
the parallel running time of 4EM is O( (log n) / ε ).

Can be ϴ( n log n ) parallel time if ε = constant / n.

Discrepancy/margin: 
ε = |#A - #B| / n

Can be as small as 
ε = O(1 / n).

Think of n = 6.023 x 1023.



The State of Majority
Algorithm/Lower Bound States Convergence Time

4-State Exact Majority
[PVV09, MNRS14]

4 Super-linear in n

[MNRS14] 3 Ω(#)
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Taking a Step Back

Population Protocols Induce Non-Trivial 
Space-Time Trade-Offs 

• Another good example: Leader Election [AAEGR17], [BGK20]
• Time bound: ! ( log n ); Space bound: ! ( log log n )

• Interesting model of extremely large-scale parallelism

Can we apply them to anything else that’s interesting?
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1. A Quick Introduction to Population Protocols

2. The Scaling Challenge in Distributed Machine Learning

3. Large-Scale Optimization via Population Protocols



The Machine Learning “Cambrian Explosion”

Image Classification 
& Segmentation

Speech Recognition 
& Translation

Strategic Games 
(Reinforcement Learning)

Machine Learning is here to stay: 
existing technologies already have significant industry adoption. 



Three Factors

Great Ideas High Quality Data Efficient Computation

Distributed/parallel computing is the key enabler 
of computational speedups.



Distribution is Key
Training Deep Neural Networks Efficiently

• Large Datasets:
• ImageNet: 1.3 Million images 

Google OpenImages: 9 Million images
• NIST2000 Switchboard dataset: 2000 hours

Proprietary speech datasets: > 30.000 hours (3.5 years)
Ø Distributed training is necessary

• Large Models:
• ResNet-152 [He et al. 2015]: 152 layers, 60 million parameters
• LACEA [Yu et al. 2016]: 22 layers, 65 million parameters 
Ø Communication and synchronization are expensive!

Is efficient distributed machine learning a solved problem?



The Scalability Problem
CSCS: Europe’s Top Supercomputer (World 4th)
• 4500+ GPU Nodes, state-of-the-art interconnect
Task: 
• Image Classification (ResNet-152 on ImageNet)
• Single Node time (TensorFlow): 19 days 
• 1024 Nodes: 25 minutes (in theory)
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Efficient distribution is still a non-trivial challenge 

for machine learning applications.
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Synchronous Message-Passing System
• n nodes, fully-connected communication topology

The Algorithm: Parallel Stochastic Gradient Descent
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Synchronous Message-Passing System
• n nodes, fully-connected communication topology

Parallel SGD (large models and high node counts)

Compute
update

Average 
updates

Update 
model

Round 1 (milliseconds) Round 2



The Plan for Today

1. A Quick Introduction to Population Protocols

2. The Scaling Challenge in Distributed Machine Learning

3. Large-Scale Optimization via Population Protocols



The General Setting

Dataset 
Partition D1

Dataset 
Partition D2

Given:
• n nodes, message-passing, fully-connected topology
• Dataset D: node pi is assigned dataset partition Di
• Loss function Loss(x, e) = how “good” is the prediction of model x on example e
Wanted: 

!1 # =%e from D1 [ Loss(x, e) ] !2 # =%e from D2 [ Loss(x, e) ]

model /minimizing ! / = !1(/) + !2(/)

Communication / 
Synchronization Cost



The Classic Algorithm: Stochastic Gradient Descent

Dataset 
Partition D1

Dataset 
Partition D2

• Each node maintains a copy of the “model/parameter” !
• In each iteration ", until convergence:
• Each node i selects a sample ei uniformly at random from Di
• It computes the update $"% = the gradient of &' at ei w.r.t. the Loss
• Nodes average their updates: $" = ($"* + $",)/,
• Update model: !"/*= !" − 1"$" , where 1" is the learning rate.

!" !"
$"* $",!"/* !"/*Synchronization



• Given distribution D, find a parameter ! ∈ ℝ$ which minimizes
%& in ) * − & 2 .

• In each iteration . until convergence:
• Each node i selects a sample ei uniformly at random from its local set
• It computes the gradient of its estimate /.0 = 10 − !.
• Nodes average their gradients to obtain /. = (14 + 16)/6 − !., 

and update their estimates by !.94= !. − :./..

Example: Distributed Mean Estimation

Dataset 
Partition D1

Dataset 
Partition D2

Why does averaging / parallelism help?
Intuition: two random samples are better than one! 

/.4 /.6!.94 !.94
The SGD algorithm remains roughly the same whether we are optimizing 

complex neural networks or solving classic regression. 

Can we leverage populations to optimize faster?



PopSGD: Distributed Optimization in a Population

For each interaction between < ", $ >:
• Each node " has its own estimate (“model”) &'"

• If " and $ meet, they take an update step and then 
average their estimates:

()*+,= ()* − /*0*)

()*+,= (1*+,= (()*+ (1*)/4 − /*(0*)+ 0*1)/2

The issue: in a population, the “model” (* can no longer be consistent!
Interactions are pairwise:

(1*+,= (1* − /*0*1

Does this still converge? Does it yield any speedup?
Note: similar algorithms considered for mean estimation via gossip [BGPS06].



A High-Level View of the Analysis
Theorem [informal]: For convex objective functions f, given large enough 
#iterations T, the PopSGD algorithm converges n times faster than SGD. 

• We keep track of the mean of the models:

• Step 1: Show that the models themselves stay 
concentrated around !"

• A multi-dimensional load-balancing process!

• Step 2: SGD is resilient to gradients being taken at 
noisy versions of !"

• Despite noise, its convergence is still proportional to the 
total number of steps taken by the entire population

!"=$
%&'

(
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OPTIMUM

Ensured by 
averaging

Follows by SGD 
resilience



Discussion
Theorem [informal]: For convex objective functions f, given large enough 
#iterations T, the PopSGD algorithm converges n times faster than SGD. 

Limitations:
• We are ignoring space / message complexity
• The number of SGD iterations has to be large 

enough to hide the overhead of mixing 
• Gradients assumed to be bounded

OPTIMUM

Ensured by 
averaging

Follows by SGD 
resilience

Is this result practically relevant?



Experimental Setup
• We train large-scale residual neural networks 
• Image classification on ILSVRC 2012 and CIFAR-10 datasets

• On the Piz Daint Supercomputer
• Each node is equipped with a state-of-the-art CPU and GPU

• Two major questions:
• Can PopSGD recover accuracy?
• Can PopSGD scale to lots of nodes?



Question 1: Accuracy

• Training the ResNet18 network on ImageNet 
• 32 nodes, accuracy vs. steps

PopSGD can match or exceed the baseline accuracy.



Question 2: Speed
• Training the ResNet18 network on ImageNet 
• 16-64 nodes, total samples (tokens) processed per second
• Versus state-of-the-art distribution techniques [PSGD, LocalSGD, AD-PSGD, SGP]
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…and it can do it faster than previous techniques.



The Power of the “Right” Model
1. Population Protocols are a minimalistic model of 

large-scale distributed computing

2. They raise fundamental algorithmic questions, but can 
also model non-trivial practical settings

3. Example: Large-Scale Optimization by Populations

4. Lots of open questions!



Questions?


