
Efficient Large-Scale Optimization
by Population

Dan Alistarh
IST Austria

The Plan for Today

1. A Quick Introduction to Population Protocols

2. The Scaling Challenge in Distributed Machine Learning

3. Large-Scale Optimization via Population Protocols

What are Population Protocols?

Three ingredients:
•Nodes

•Communication
•Computation

A model for large-scale
decentralized distributed computation.

Computational Model
Population Protocols [AADFP’04, Dijkstra Award 2020]

• Nodes are simple, identical agents
• Each node is an anonymous finite state automaton
• E.g., a molecule or a cell

• Interactions are pairwise, and follow a fair scheduler
• Communication graph is fully connected (clique)
• At each step, an edge chosen uniformly at random (“well-mixed solution”)
• Nodes update their state following interactions

• Computation is performed collectively
• The system should converge to configurations

satisfying meaningful predicates on the input
• No “fixed” decision time

• A.k.a. Chemical Reaction Networks, Petri Net varieties

Complexity Measures

1. Time Complexity
• Step = a single pair interacts

• Chosen uniformly at random

• Parallel convergence time
• #rounds to convergence / # nodes
• Alternative continuous-time definition exists

2. Space Complexity
• Number of distinct states per automaton
• Alternatively, #memory bits to encode state

Implementable!

Courtesy of the Microsoft Research Biological Computation Group

What can they compute?
We can perform interactions of the type:
Example: the OR function
• Initial states: 0 or 1
• Final state:

• If there exists a 1, then all 1.
• Otherwise, all 0

• Protocol:

10

1 1

1

1 1

10 0

0 0

1

1 1

0

A B

C D

Can they compute anything interesting?
Theorem [AADFP]: The set of predicates computable by a population

protocol is exactly the set of predicates expressible in Presburger arithmetic.

Majority (“Consensus”)
• Initial states A, B
• Output:
• A if #A > #B initially.
• B, otherwise.

• Fundamental task
• Complexity: [AAE08] & [DV12]; [PVV09] & [MNRS14]
• Natural computation:

the cell cycle switch implements approximate majority [CC12]
• Implementation in DNA: [CDS+13, Nature Nanotechnology]

Solving Majority
4-State Exact Majority [PVV09] [MNRS14]

• Protocol:

A B

wA wB

A B

wA wB

A wB

wAA

BwA

wB B

Theorem [Draief & Vojnovic ’12]: Given n nodes and discrepancy ε,
the parallel running time of 4EM is O((log n) / ε).

Can be ϴ(n log n) parallel time if ε = constant / n.

Discrepancy/margin:
ε = |#A - #B| / n

Can be as small as
ε = O(1 / n).

Think of n = 6.023 x 1023.

The State of Majority
Algorithm/Lower Bound States Convergence Time

4-State Exact Majority
[PVV09, MNRS14]

4 Super-linear in n

[MNRS14] 3 Ω(#)

The State of Majority
Algorithm/Lower Bound States Convergence Time

4-State Exact Majority
[PVV09, MNRS14]

4 Super-linear in n

[MNRS14] 3 Ω(#)
Average-and-Conquer

[AGV15]
%&.
(

O(polylog n)

[AGV15] 4 Ω(#)

The State of Majority
Algorithm/Lower Bound States Convergence Time

4-State Exact Majority
[PVV09, MNRS14]

4 Super-linear in n

[MNRS14] 3 Ω(#)
Average-and-Conquer

[AGV15]
%&.
(

O(polylog n)

[AGV15] 4 Ω(#)

Split-Join Algorithm
[AAEGR17]

) log2 #) log3 #

[AAEGR17] ≤ 1/2 log log # Ω #
polylog #

Simplified &
Improved to
) log2 # by

Berenbrink et al.,
2017

The State of Majority
Algorithm/Lower BoundO States Convergence Time

4-State Exact Majority
[PVV09, MNRS14]

4 Super-linear in n

[MNRS14] 3 Ω(#)
Average-and-Conquer

[AGV15]
%&.
(

O(polylog n)

[AGV15] 4 Ω(#)

Split-Join Algorithm
[AAEGR17]

) log2 #) log3 #

[AAEGR17] ≤ 1/2 log log # Ω #
polylog #

[AAG18] 4 (log n) O (log2 n)

[BKKP20] O(log n) O(log3/2 n)

Simplified &
Improved to
) log2 # by

Berenbrink et al.,
2017

Taking a Step Back

Population Protocols Induce Non-Trivial
Space-Time Trade-Offs

• Another good example: Leader Election [AAEGR17], [BGK20]
• Time bound: ! (log n); Space bound: ! (log log n)

• Interesting model of extremely large-scale parallelism

Can we apply them to anything else that’s interesting?

The Plan for Today

1. A Quick Introduction to Population Protocols

2. The Scaling Challenge in Distributed Machine Learning

3. Large-Scale Optimization via Population Protocols

The Machine Learning “Cambrian Explosion”

Image Classification
& Segmentation

Speech Recognition
& Translation

Strategic Games
(Reinforcement Learning)

Machine Learning is here to stay:
existing technologies already have significant industry adoption.

Three Factors

Great Ideas High Quality Data Efficient Computation

Distributed/parallel computing is the key enabler
of computational speedups.

Distribution is Key
Training Deep Neural Networks Efficiently

• Large Datasets:
• ImageNet: 1.3 Million images

Google OpenImages: 9 Million images
• NIST2000 Switchboard dataset: 2000 hours

Proprietary speech datasets: > 30.000 hours (3.5 years)
Ø Distributed training is necessary

• Large Models:
• ResNet-152 [He et al. 2015]: 152 layers, 60 million parameters
• LACEA [Yu et al. 2016]: 22 layers, 65 million parameters
Ø Communication and synchronization are expensive!

Is efficient distributed machine learning a solved problem?

The Scalability Problem
CSCS: Europe’s Top Supercomputer (World 4th)
• 4500+ GPU Nodes, state-of-the-art interconnect
Task:
• Image Classification (ResNet-152 on ImageNet)
• Single Node time (TensorFlow): 19 days
• 1024 Nodes: 25 minutes (in theory)

20

0

2

4

6

8

10

12

2 4 8 16 32 64

Da
ys

Number of GPU Nodes

Time to Train Model
9.6 days

3.1 days
2.4 days

5 days

3.2 days 2.5 days

Communication

Computation

21

The Scalability Problem
CSCS: Europe’s Top Supercomputer (World 4th)

• 4500+ GPU Nodes, state-of-the-art interconnect

Task:

• Image Classification (ResNet-152 on ImageNet)

• Single Node time (TensorFlow): 19 days
• 1024 Nodes: 25 minutes (in theory)

0

2

4

6

8

10

12

2 4 8 16 32 64

D
a

ys

Number of GPU Nodes

Time to Train Model
9.6 days

3.1 days2.4 days

5 days

3.2 days
2.5 days

10%

Computation

90%
Communication

and

Synchronization

Communication

Computation

Efficient distribution is still a non-trivial challenge

for machine learning applications.
22

The Scalability Problem
CSCS: Europe’s Top Supercomputer (World 4th)
• 4500+ GPU Nodes, state-of-the-art interconnect

Task:
• Image Classification (ResNet-152 on ImageNet)

• Single Node time (TensorFlow): 19 days
• 1024 Nodes: 25 minutes (in theory)

Synchronous Message-Passing System
• n nodes, fully-connected communication topology

The Algorithm: Parallel Stochastic Gradient Descent

Compute
update

Average
updates

Update
model

Round 1 (milliseconds) Round 2 Round 3

Synchronous Message-Passing System
• n nodes, fully-connected communication topology

Parallel SGD (large models)

Compute
update

Average
updates

Update
model

Round 1 Round 2

Synchronous Message-Passing System
• n nodes, fully-connected communication topology

Parallel SGD (large models and high node counts)

Compute
update

Average
updates

Update
model

Round 1 (milliseconds) Round 2

The Plan for Today

1. A Quick Introduction to Population Protocols

2. The Scaling Challenge in Distributed Machine Learning

3. Large-Scale Optimization via Population Protocols

The General Setting

Dataset
Partition D1

Dataset
Partition D2

Given:
• n nodes, message-passing, fully-connected topology
• Dataset D: node pi is assigned dataset partition Di
• Loss function Loss(x, e) = how “good” is the prediction of model x on example e
Wanted:

!1 # =%e from D1 [Loss(x, e)] !2 # =%e from D2 [Loss(x, e)]

model /minimizing ! / = !1(/) + !2(/)

Communication /
Synchronization Cost

The Classic Algorithm: Stochastic Gradient Descent

Dataset
Partition D1

Dataset
Partition D2

• Each node maintains a copy of the “model/parameter” !
• In each iteration ", until convergence:
• Each node i selects a sample ei uniformly at random from Di
• It computes the update $"% = the gradient of &' at ei w.r.t. the Loss
• Nodes average their updates: $" = ($"* + $",)/,
• Update model: !"/*= !" − 1"$" , where 1" is the learning rate.

!" !"
$"* $",!"/* !"/*Synchronization

• Given distribution D, find a parameter ! ∈ ℝ$ which minimizes
%& in) * − & 2 .

• In each iteration . until convergence:
• Each node i selects a sample ei uniformly at random from its local set
• It computes the gradient of its estimate /.0 = 10 − !.
• Nodes average their gradients to obtain /. = (14 + 16)/6 − !.,

and update their estimates by !.94= !. − :./..

Example: Distributed Mean Estimation

Dataset
Partition D1

Dataset
Partition D2

Why does averaging / parallelism help?
Intuition: two random samples are better than one!

/.4 /.6!.94 !.94
The SGD algorithm remains roughly the same whether we are optimizing

complex neural networks or solving classic regression.

Can we leverage populations to optimize faster?

PopSGD: Distributed Optimization in a Population

For each interaction between < ", $ >:
• Each node " has its own estimate (“model”) &'"

• If " and $ meet, they take an update step and then
average their estimates:

()*+,= ()* − /*0*)

()*+,= (1*+,= (()*+ (1*)/4 − /*(0*)+ 0*1)/2

The issue: in a population, the “model” (* can no longer be consistent!
Interactions are pairwise:

(1*+,= (1* − /*0*1

Does this still converge? Does it yield any speedup?
Note: similar algorithms considered for mean estimation via gossip [BGPS06].

A High-Level View of the Analysis
Theorem [informal]: For convex objective functions f, given large enough
#iterations T, the PopSGD algorithm converges n times faster than SGD.

• We keep track of the mean of the models:

• Step 1: Show that the models themselves stay
concentrated around !"

• A multi-dimensional load-balancing process!

• Step 2: SGD is resilient to gradients being taken at
noisy versions of !"

• Despite noise, its convergence is still proportional to the
total number of steps taken by the entire population

!"=$
%&'

(
)%"

OPTIMUM

Ensured by
averaging

Follows by SGD
resilience

Discussion
Theorem [informal]: For convex objective functions f, given large enough
#iterations T, the PopSGD algorithm converges n times faster than SGD.

Limitations:
• We are ignoring space / message complexity
• The number of SGD iterations has to be large

enough to hide the overhead of mixing
• Gradients assumed to be bounded

OPTIMUM

Ensured by
averaging

Follows by SGD
resilience

Is this result practically relevant?

Experimental Setup
• We train large-scale residual neural networks
• Image classification on ILSVRC 2012 and CIFAR-10 datasets

• On the Piz Daint Supercomputer
• Each node is equipped with a state-of-the-art CPU and GPU

• Two major questions:
• Can PopSGD recover accuracy?
• Can PopSGD scale to lots of nodes?

Question 1: Accuracy

• Training the ResNet18 network on ImageNet
• 32 nodes, accuracy vs. steps

PopSGD can match or exceed the baseline accuracy.

Question 2: Speed
• Training the ResNet18 network on ImageNet
• 16-64 nodes, total samples (tokens) processed per second
• Versus state-of-the-art distribution techniques [PSGD, LocalSGD, AD-PSGD, SGP]

0

40000

80000

120000

160000

200000

16 nodes 32 nodes 64 nodes

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

local SGD
Allreduce SGD
AD−PSGD
SGP
SwarmSGDPopSGD

…and it can do it faster than previous techniques.

The Power of the “Right” Model
1. Population Protocols are a minimalistic model of

large-scale distributed computing

2. They raise fundamental algorithmic questions, but can
also model non-trivial practical settings

3. Example: Large-Scale Optimization by Populations

4. Lots of open questions!

Questions?

