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Basic definitions

We work with finite, simple, undirected graphs.

A hereditary class (just “class” from now on) is a set of graphs closed
under taking induced subgraphs.

Any hereditary class can be
described in terms of minimal forbidden induced subgraphs.
Given a set S of graphs, Free(S) denotes the class of graphs with no
induced subgraphs in S .

A graph parameter is a function which associates to each graph a
number.
All parameters we consider are assumed to be hereditary, which
means they do not increase when taking induced subgraphs.
Examples: chromatic number, clique-width, ...

Let p be a parameter and X a graph class. We say p is bounded in X
if there is a constant k such that p(G ) ≤ k for all G ∈ X , and
unbounded in X otherwise.
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Some motivation

An interesting problem: given a parameter p, can we characterise the
classes in which p is bounded?

An idea: try to find the “smallest” obstructions to boundedness.
A class X is minimal of unbounded p if p is unbounded in X , but bounded
in every proper subclass of X .

An example: let ν(G ) denote the number of vertices of G .
Let K be the class of complete graphs, and K their complements.
K and K are minimal classes of unbounded ν.

In fact, they are the only minimal classes of unbounded ν.

Theorem (Ramsey)

A class X is of unbounded ν if and only if it contains K or K.
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Some motivation

An obstacle:

let z(G ) be the largest number n such that G has the cycle
Cn as an induced subgraph, and let C be the hereditary closure of the set
{C3,C4, . . . }. Then z is unbounded in C, but C has no minimal subclass of
unbounded z .

Proof: If z is unbounded in X ⊆ C, then X must contain infinitely many
cycles Ci . But then X ∩ Free(Ck) (for any k with Ck ∈ X ) is a strictly
smaller class in which z is unbounded.

A bypass: restrict ourselves to a setting in which this does not happen.
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Well-quasi-orderability

Let ≤ be a quasi-order on a set X .

A chain is a set of elements of X , every two of which are ≤–comparable.

An antichain is a set of elements of X , no two of which are ≤–comparable.

(X ,≤) is well-quasi-ordered (“wqo” for short) if:

There are no infinite strictly descending chains (“well-foundedness”).

There are no infinite antichains.

Examples

The class of all graphs is not wqo by the induced subgraph relation.
An infinite antichain is given by the cycles C3,C4, . . . .

The set of all classes of graphs is not wqo (not even well-founded)
under inclusion. An infinite strictly descending chain is given by
Xi := Free(C3, . . . ,Ci ), i ≥ 3.
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Well-quasi-orderability

Theorem (folklore)

A class X is wqo under the induced subgraph relation if and only if the set
of subclasses of X is well-founded under inclusion.

Corollary

Let X be a wqo class, Y ⊆ X a subclass, and let p be a parameter. If p is
unbounded in Y, then there exists a minimal class Z ⊆ Y of unbounded p.

Proof: If Y itself is minimal, we are done.

Otherwise, there exists Y1 ( Y which is of unbounded p.
If Y1 is minimal, we are done.

Otherwise, there exists Y2 ( Y1 which is of unbounded p.
If Y2 is minimal, we are done.
...
Since there are no infinite strictly descending chains, this must terminate.
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Well-quasi-orderability

This can be restated as follows:

Corollary

Let X be a wqo class, and let p be a parameter unbounded in X . Write
MX (p) for the set of minimal subclasses of X where p is unbounded.

Then for any subclass Y ⊆ X , the following are equivalent:

p is unbounded in Y.

There exists Z ∈ MX (p) such that Z ⊆ Y.

In other words, if X is wqo, then unboundedness in X of any parameter
can be characterised in terms of minimal classes.
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Cographs

The class of cographs, or complement-reducible graphs, has been studied
extensively and has many known characterisations.

It is:

the smallest class of graphs containing a one-vertex graph, and closed
under disjoint union and join.

the class of graphs, all of whose induced subgraphs are either
disconnected, or the complement of a disconnected graph.

the class of graphs that avoid P4 as an induced subgraph.

the class of graphs of clique-width at most 2.

Theorem (Damaschke)

The class of cographs is wqo under the induced subgraph relation.

P. Damaschke, Induced subgraphs and well-quasi-ordering. J. Graph Theory 14(4),

427–435 (1990).
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Cographs

Cographs provide a “safe” environment, in which many interesting things
still happen.

One example is the behaviour of linear clique-width.

This parameter is unbounded in the class of cographs.
F. Gurski, E. Wanke, On the relationship between NLC-width and linear NLC-width.

Theoretical Computer Science 347, 76–89 (2005).

A class of cographs has unbounded linear clique-width if and only if it
contains all quasi-threshold graphs or their complements.
R. Brignall, N. Korpelainen, V. Vatter, Linear clique-width for hereditary classes of

cographs. J. Graph Theory 84, 501-511 (2017).

We present several more results of this type: for various parameters that
are unbounded in the class of cographs, we find the minimal classes where
the parameters are unbounded.
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Co-chromatic number

Definition

The co-chromatic number of G is the minimum number of subsets in a
partition of V (G ) such that any subset is a clique or an independent set.

Theorem

Let U be the class of unions of cliques. U and U are the only minimal
hereditary subclasses of cographs of unbounded cochromatic number.
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Lettericity (Petkovšek, 2002)

Lettericity is a parameter of interest in the study of well-quasi-orderability:
classes of bounded lettericity are wqo.

It is also related to the notion of geometric griddability in the study of
permutations.

Theorem

Let M be the class of graphs of vertex degree at most 1. M and M are
the only minimal hereditary subclasses of cographs of unbounded
lettericity.
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Boxicity

Definition

The boxicity of a graph G is the minimum dimension in which G can be
represented as an intersection graph of hyper-rectangles.

Theorem

M is the only minimal hereditary subclass of cographs of unbounded
boxicity.
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H-index

Definition

The H-index of a graph G is the largest k ≥ 0 such that G has k vertices
of degree at least k .

Theorem

Let B be the class of complete bipartite graphs, and F the class of star
forests. K,B and F are the only minimal hereditary subclasses of cographs
of unbounded H-index.
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Achromatic number

Definition

A complete k-colouring of a graph G is a partition of G into k
independent sets such that any two of the independent sets have an edge
between them. The achromatic number of G is the maximum k such that
G admits a complete k-colouring.

Theorem

K and M are the only minimal hereditary subclasses of cographs of
unbounded achromatic number.
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Contiguity

Definition

The contiguity of a graph G is the minimum number k such that V (G )
admits a linear ordering in which the neighbourhood of each vertex
consists of at most k intervals.

Definition

The class Q of quasi-threshold graphs is the smallest subclass of cographs
such that:

K1 ∈ Q;

If G1,G2 ∈ Q, then G1 ∪ G2 ∈ Q;

If G ∈ Q, then v × G ∈ Q.

Theorem

Q and Q are the only minimal hereditary subclasses of cographs of
unbounded contiguity.
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A hierarchy of parameters

For classes of graphs, the minimal forbidden induced subgraph
characterisation can be very helpful.

M. Jean, An interval graph is a comparability graph. J. Combinatorial Theory 7(2),

189–190 (1969).

P. C. Fishburn, An interval graph is not a comparability graph. J. Combinatorial Theory

8(4), 442–443 (1970).

It can be used to compare classes of graphs:

Proposition

Free(S) ⊆ Free(T ) if and only if every graph H ∈ T has a graph G ∈ S
with G ≤ H.
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A hierarchy of parameters

Analogously, we can compare parameters.

Definition

Let p and q be two parameters. We say p is stronger than q in the
universe of cographs if boundedness of q implies boundedness of p in a
class of cographs.

Example

H-index is stronger than maximum degree.

Proposition

Write M(p),M(q) for the respective sets of minimal classes of cographs
where p and q are unbounded. p is stronger than q if and only if for every
class Y ∈ M(q) there is a class X ∈ M(p) with X ⊆ Y.
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A hierarchy of parameters

matching number
(M, B, K)

achromatic number
(M, K)

neighbourhood diversity
(M, M, T )

lettericity
(M, M)

boxicity
(M)

maximum degree
(S, K)

H-index
(F , B, K)

tree-width, degeneracy
(B, K)

chromatic number
(K)

co-chromatic number
(U , U)

linear clique-width, contiguity
(Q, Q)

Figure: A Hasse diagram of graph parameters within the universe of cographs
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Some further questions

In the hierarchy, there are 13 parameters, but only 11 different classes
(including complements). Why is that?

Lemma

For a class X , the following are equivalent:

There exists a parameter pX for which X is minimal.

There exists a universal sequence G1,G2, . . . of graphs in X such that
Gi contains any graph in X on i vertices.

Proof: “ =⇒ ”
Since pX is unbounded in X , there exists a sequence G1,G2, . . . with
pX (Gi )→∞.

Since X is minimal, for any graph H ∈ X , X ∩ Free(H) is of bounded pX .

Hence H is induced in every Gi for i large enough.
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Some further questions

Since there are finitely many graphs on i vertices, all of them belong to a
common Gi .

We get a universal subsequence Gt1 ,Gt2 , . . . .

“⇐= ”
Suppose X has a universal sequence G1,G2, . . . .

Define pX (G ) as the largest i such that G contains every graph in X on i
vertices as an induced subgraph.

Then pX is unbounded in X (because of the sequence), and unbounded in
every proper subclass by construction.

This helps, but it is not a complete answer.
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Some further questions

H-index, for instance, is characterised in the class of all graphs by the
same minimal classes. When does this happen?

More generally, are there conditions under which we can predict the
behaviour of parameters in the class of all graphs based on their
behaviour in a restricted setting (e.g., wqo classes)?

A similar study could be carried regarding hardness of algorithms.

H. Bodlaender, Achromatic number is NP–complete for cographs and interval

graphs. Information Processing Letters 31(3), 135–138 (1989).

P. Damaschke, Induced subgraph isomorphism for cographs is NP–complete. In:

WG’90, LNCS 487, 72–78 (1991).

Finally, note that the sets M(p) we found so far are all finite. Is this
the case for all parameters?
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Bonus: Minimal classes of unbounded contiguity

Definition

The contiguity cont(G ) of a graph G is the minimum number k such that
V (G ) admits a linear ordering in which the neighbourhood of each vertex
consists of at most k intervals.

Theorem

Q and Q are the only minimal hereditary subclasses of cographs of
unbounded contiguity.
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Bonus: Minimal classes of unbounded contiguity

Proof.

Step 1: Q and Q have unbounded contiguity.

Remark

cont(G ) ≤ cont(G ) + 1, so it suffices to prove it for Q.

Lemma

Suppose cont(G ) = k . Then cont (v × (G ∪ G ∪ G )) > k .

L

v

L1 L2 L3

u1 u2 u3

u1 u2u3
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Bonus: Minimal classes of unbounded contiguity

Lemma

Let H ∈ Q, K ∈ Q. There exists a constant c(H,K ) such that the
contiguity of (H,K )-free cographs is at most c(H,K ).

Proof: By induction on |V (H)|+ |V (K )|.

Remark

If G = G1 ∪ · · · ∪ Gp, then cont(G ) = maxi cont(Gi ).

If G = G1 × · · · × Gp, then cont(G ) ≤ maxi cont(Gi ) + 2.

Case 1: K = K ′ × w (or H = H ′ ∪ v).

If G = G1 × · · · × Gp, each Gp is K ′-free
=⇒ cont(Gi ) ≤ c(H,K ′) =⇒ cont(G ) ≤ c(H,K ′) + 2.

If G = G1 ∪ · · · ∪ Gp, each Gi is connected
=⇒ cont(Gi ) ≤ c(H,K ′) + 2 =⇒ cont(G ) ≤ c(H,K ′) + 2.
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Bonus: Minimal classes of unbounded contiguity

Case 2: H = H ′ ∪ H ′′ and K = K ′ × K ′′.

G ′1 G1

G ′2 G2

G3

G ′k−1

G ′k

+1

Gk

G = G1 ∪ (G2 × (G3 ∪ . . . (Gk × Gk+1))) with cont(Gi ) ≤ c ′(H,K ).

L := L1L3.
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G ′0
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G ′k−1

Gk+1 Gk

G = G1 ∪ (G2 × (G3 ∪ . . . (Gk × Gk+1))) with cont(Gi ) ≤ c ′(H,K ).

L := L1L3L5 . . . Lk−1Lk+1LkLk−2 . . . L6L4L2.
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Questions?

Thank you!
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