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α-bounded digraphs

α-bounded digraphs are digraphs whose maximum independent set
size is bounded by α.
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Lemma 2
Tournament on four or more vertices is not singly connected.

I Algorithm for SCVD in tournaments is implied trivially by the
lemma.

I Check if n − k ≤ 3, otherwise output no.

I Iterate over all three subset induced digraphs.

The runtime of the algorithm is O(n3).
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Observation 1
If a digraph D has a path P such that there is a forward arc with
respect to P, then D is not singly connected.
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Lemma (Algo Lemma)

For every α ∈ N, every α-bounded digraph with at least α(2α + 4)
vertices is not singly connected.

I The algorithm for SCVD trivially follows from Algo Lemma.
It is exactly like SCVD in tournaments.

I Runtime: O(nα(2α+4)−1).
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For a path P in a singly connected digraph D, vP ∈ V (P) can
have at most two backward arcs incident on it.

I Assume not. Let there be three backward arcs incident in vP .
There are four possibilities.
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Figure: Only possible configuration for 2 backward arcs incident on v
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SCVD in α-bounded digraphs
Proof Outline of algo lemma

Lemma (Algo Lemma)

For every α ∈ N, every α-bounded digraph with at least α(2α + 4)
vertices is not singly connected.

I Assume not. Let D be α-bounded singly connected digraph
with |V (D)| ≥ α(2α + 4).

I By Gallai Milgram, there is a path cover P, and maximal
independent set I = {vP |P ∈ P}.

I By averaging argument, there is a path P such that
|V (P)| ≥ 2α + 4.



SCVD in α-bounded digraphs
Proof Outline of algo lemma

Lemma (Algo Lemma)

For every α ∈ N, every α-bounded digraph with at least α(2α + 4)
vertices is not singly connected.

I Assume not. Let D be α-bounded singly connected digraph
with |V (D)| ≥ α(2α + 4).

I By Gallai Milgram, there is a path cover P, and maximal
independent set I = {vP |P ∈ P}.

I By averaging argument, there is a path P such that
|V (P)| ≥ 2α + 4.



SCVD in α-bounded digraphs
Proof Outline of algo lemma

Lemma (Algo Lemma)

For every α ∈ N, every α-bounded digraph with at least α(2α + 4)
vertices is not singly connected.

I Assume not. Let D be α-bounded singly connected digraph
with |V (D)| ≥ α(2α + 4).

I By Gallai Milgram, there is a path cover P, and maximal
independent set I = {vP |P ∈ P}.

I By averaging argument, there is a path P such that
|V (P)| ≥ 2α + 4.



SCVD in α-bounded digraphs
Proof Outline of algo lemma

Lemma (Algo Lemma)

For every α ∈ N, every α-bounded digraph with at least α(2α + 4)
vertices is not singly connected.

I Assume not. Let D be α-bounded singly connected digraph
with |V (D)| ≥ α(2α + 4).

I By Gallai Milgram, there is a path cover P, and maximal
independent set I = {vP |P ∈ P}.

I By averaging argument, there is a path P such that
|V (P)| ≥ 2α + 4.



SCVD in α-bounded digraphs
Proof Outline of algo lemma

vP



SCVD in α-bounded digraphs
Proof Outline of algo lemma

vP



SCVD in α-bounded digraphs
Proof Outline of algo lemma

vP



SCVD in α-bounded digraphs
Proof Outline of algo lemma

vP



SCVD in α-bounded digraphs
Proof Outline of algo lemma

vP



SCVD in α-bounded digraphs
Proof Outline of algo lemma

vP



SCVD in α-bounded digraphs
Proof Outline of algo lemma

I |N[I ] ∩ V (P)| ≤ 2(α− 1) + 4 + 1 = 2α+ 3 (in the underlying
undirected graph).

I There exists a vertex v ∈ V (P) which is not adjacent to I .

I This contradicts our assumption that I is a maximal
independent set.
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