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Alexandre Blanché1 Haruka Mizuta2 Paul Ouvrard1

Akira Suzuki2

1LaBRI, Bordeaux 2Tohoku University, Sendai, Japan

June 10, 2020
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Dominating sets

Definition

A dominating set is a subset of vertices whose neighborhood
contains all the vertices.

X X
Dominating set problem

Instance : A graph G , an integer s

Question : Does G have a dominating set of size at most s ?

This problem is NP-complete. 1/24
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Dominating set reconfiguration

?
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Model : Successive additions and removals of vertices
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Dominating set reconfiguration
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Model : Successive additions and removals of vertices



Size bound

Without a bound on the size of the dominating sets, they are all
reachable through successive additions and removals:
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Size bound

We restrict the size of the authorized dominating sets with a
bound k :
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Alexandre Blanché, Haruka Mizuta, Paul Ouvrard, Akira Suzuki Decremental Optimization of the Dominating Set Reconfiguration



Optimization problem

OPT-DSR (OPTimization variant of Dominating Set Reconfiguration)

Input : A graph G , two integers k ,s, a dominating set D0

of size |D0| ≤ k .

Question : Does G have a dominating set Ds of size |Ds | ≤ s,

such that D0
k
! Ds ?

k

D|  |

D0

s

?
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General complexity

Observation

OPT-DSR generalizes the dominating set problem.

A graph G = (V ,E ) has a dominating set of size ≤ s
⇔

the instance (G , k = |V |, s,D = V ) is a solution of OPT-DSR.

V
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Alexandre Blanché, Haruka Mizuta, Paul Ouvrard, Akira Suzuki Decremental Optimization of the Dominating Set Reconfiguration

Corollary

OPT-DSR is NP-hard.



General complexity

(NP ⊆ PSPACE ⊆ EXPTIME)

Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR is PSPACE-complete, including when the input graph :

is bipartite ;

is a split graph ;

has bounded pathwidth.

Proof : By adapting a result on independent sets and the
OPT-ISR problem, analogous to OPT-DSR.

9/24
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Independent set reconfiguration

OPT-ISR deals with independent set reconfiguration.
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OPT-ISR

OPT-ISR

Input : A graph G , k , s ∈ N, an independent set I0 with
|I0| ≥ k .

Question : Does G have an independent set Is with |Is | ≥ s

and I0
≥k
! Is ?

k

I|  |

I0

s

?
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Theorem [Ito, Mizuta, Nishimura, Suzuki (2018)]

OPT-ISR is PSPACE-hard when the input graph has bounded
pathwidth.



Idea of the reduction

An independent set A vertex cover
(its complement)

An equivalent
dominating set

Corollary

OPT-ISR is PSPACE-hard ⇒ OPT-VCR is PSPACE-hard

Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR is PSPACE-hard.
12/24
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Positive results

Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR can be solved in polynomial time on interval graphs.

13/24
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Interval graphs

We build in linear time in |G | a possible representation of G
as a set of intervals.

14/24
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Proof : (G , k, s,D), with G an interval graph



Interval graphs

We build in linear time in |G | a possible representation of G
as a set of intervals.

14/24
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Proof : (G , k, s,D), with G an interval graph



Interval graphs
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Proof : (G , k, s,D), with G an interval graph

We build a minimum dominating set Dm of G ,
in linear time in |G |.

Lemma [Haddadan et al. (2015)]

We can reconfigure D in D ′, s.t. Dm ⊆ D ′,
under the bound |D|+ 1, in linear time in |G |.



Interval graphs
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Alexandre Blanché, Haruka Mizuta, Paul Ouvrard, Akira Suzuki Decremental Optimization of the Dominating Set Reconfiguration

Proof : (G , k, s,D), with G an interval graph

We build a minimum dominating set Dm of G ,
in linear time in |G |.
We thus have D

k
! D ′

k
! Dm.

We can answer yes if |Dm| ≤ s and produce the corresponding
sequence in linear time in |G |.



Interval graphs

Proof : We build a minimum dominating set of G .

Ordering : by ending time

favored neighbor of vi := maximum neighbor of vi in the
ordering

1 4 6

2

3

5

Algorithm Traverse the vertices in order.

If vi is dominated, skip it.
Otherwise, add its favored neighbor to the dominating set.
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Alexandre Blanché, Haruka Mizuta, Paul Ouvrard, Akira Suzuki Decremental Optimization of the Dominating Set Reconfiguration



Interval graphs

Proof : We build a minimum dominating set of G .

Ordering : by ending time

favored neighbor of vi := maximum neighbor of vi in the
ordering

1 4 6

2

3

5

?

Algorithm Traverse the vertices in order.

If vi is dominated, skip it.
Otherwise, add its favored neighbor to the dominating set.

16/24
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Parameterized complexity

A graph G is d-degenerate it possesses a vertex v
of degree ≤ d and G − v is also d-degenerate.

A 2-degenerate graph.

Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR can be solved in time FPT(d + s),
i.e. in time f (d + s)× nO(1) if |G | = n ;
where d is the degeneracy of the graph
and s is the size of the sought solution.
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Parameterized complexity
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Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR can be solved in time FPT(τ),
where τ is the size of a minimum vertex cover of the graph.



Parameterized complexity
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Alexandre Blanché, Haruka Mizuta, Paul Ouvrard, Akira Suzuki Decremental Optimization of the Dominating Set Reconfiguration

Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR can be solved in time FPT(τ),
where τ is the size of a minimum vertex cover of the graph.

Proof :

Trivial case : If |D| = k and D is minimal, then D is frozen.
We cannot remove nor add vertices,
hence the instance (G , k, s,D) is positive iff |D| ≤ s.
→ We can test this condition in time O(|G |) X

Exemple pour k = 3



Parameterized complexity
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Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR can be solved in time FPT(τ),
where τ is the size of a minimum vertex cover of the graph.

Proof :

Trivial case : If |D| = k and D is minimal, then D is frozen.
We cannot remove nor add vertices,
hence the instance (G , k, s,D) is positive iff |D| ≤ s.
→ We can test this condition in time O(|G |) X
If |D| = k and D is not minimal, then we can remove
a vertex of D and reduce to the last case, |D| < k .

From now on we assume that |D| < k.
→ We can add at least 1 vertex to D without getting above k



Parameterized complexity

Proof :

We compute τ in time FPT(τ).

2 possibilities :

Either τ > s : As d ≤ τ , we have d + s ≤ 2τ .
→ we use the FPT(d + s)-time algorithm X

Or τ ≤ s : The instance is a positive instance in this case.
To prove it, we will reconfigure D into a dominating set D ′

that satisfies |D ′| ≤ τ .
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Theorem [B., Mizuta, Ouvrard, Suzuki (2020)]

OPT-DSR can be solved in time FPT(τ),
where τ is the size of a minimum vertex cover of the graph.



Proof

Let G be a graph.

22/24
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Proof

X I

vertex cover

stable

We build a minimum vertex cover in time FPT(τ).
22/24
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Proof

X I

vertex cover

stable

Let D be an initial dominating set.
22/24
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Proof

X I

vertex cover

stable

We associate to each v ∈ X \ D a neighbor t(v).
Let T = {t(v) | v ∈ X \ D}. 22/24
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Proof

X I

vertex cover
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Already
dominated
(   T)
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Proof

X I

vertex cover
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Not
dominated
(   T)
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Alexandre Blanché, Haruka Mizuta, Paul Ouvrard, Akira Suzuki Decremental Optimization of the Dominating Set Reconfiguration



Proof

X I

vertex cover

stable

T

T
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Proof

When (I ∩ D ′) ⊆ J, we have :

|I ∩ D ′| ≤ |t−1(I ∩ D ′)|
≤ |X \ D ′|
= τ − |X ∩ D ′|

Hence we have :

|D ′| = |I ∩ D ′|+ |X ∩ D ′|
≤ τ
≤ s

Thus D ′ is a solution :
the instance is positive.
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X I

vertex cover

stable

T

T



Conclusion

Complexity of OPT-DSR

PSPACE-complete
(even on bipartite, split and bounded pathwidth graphs)

Polynomial on Interval graphs

FPT(d + s) (d = degeneracy, s = size of the solution)

FPT(τ) (τ = size of a minimum vertex cover)

Thanks for your attention.
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