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Fixed Parameter Tractable (FPT)

A parameterized problem with input size n and parameter tis called
fixed parameter tractable (FPT) if it can be solved in time f(t) * poly(n),

where f Is a computable function only depending on t.



Parameters

An important quality of a parameter is that it is easy to compute.

® Clique-width: the parameterized complexity of computing it is still an open
problem

* Treewidth, rankwidth, and vertex cover: computing them are all NP-hard
problems but they are computable in FPT time when their respective
parameters are bounded

® Modular-width and neighborhood diversity: they are computable in
polynomial time



Neighborhood diversity

G = (V,E)

u,v € V have the same type iff N(v) \ {u} = N(u) \ {v}
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fori =1,2,...,t



Neighborhood diversity

G = (V,E)
u,v € V have the same typeiff N(v) \ {u} = Nu) \ {v}

A type partition of G is a partition vV, V,,...,V, of the node
set IV such that all the nodes in V,; have the same type,

fori =1,2,...,t

® Note that by definition, each V; induces either a clique or i
an independent set in G nd(G) =7

The neighborhood diversity of G,nd(G), introduced by Lampis, is the
minimum number t of sets in a type partition V,,V,,...,V, of G
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G = (V,E)
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A type partition V,V,,..., V., of G §\\:\\‘//,”f
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The type graph H of G is defined as

° V(H) =1{1,2,..,t}
® E(H)={(x,y)|x #yand foreachu € V,,v € V,
it holds that (u,v) € E(G)}




[terated type partition
G = (V,E)

G 1S a base graph if it matches its type graph

® that is, the type partition of G consists of singletons,
each representing a node in V(G), and nd(G) = |V (G)]



Iterated type partition

The type graph sequence of G is the graph sequence H®O HM | H(@)

e H® denotes the type graph of HED, fori > 1
® d is the smallest integer such that H@ is a base graph

The iterated type partition of G, denoted by itp(G), is the number of

nodes of H@®
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itp(G) =5



Iterated type partition
and the other parameteres

itp(G) < nd(G)

itp(G) can be much smaller than nd(G)



Iterated type partition
and the other parameteres

mw(G) < itp(G)

lterated type partition is a “special case” of modular-width in which the

modules can only be independent sets or cliques



Iterated type partition
and the other parameteres

itp(G) < 27 4 ye(6)

cw(G) < itp(G) +1

itp(G) is incomparable to tw(G)



Iterated type partition

our results

Theorem 1. There exists a polynomial time algorithm which, for any input graph G

computes the type graphs sequence of G and, consequently, finds the value itp(G).
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our results
EQC DS, VC Coloring
cw |[W[1l]-hard |FPT W[1]-hard
mw |W[1l]-hard |FPT FPT
itp |W[1l]-hard |FPT FPT
02i*@ + poly(n)) 0 (itp(G)25itr@+oitr(Glogn + poly(n))
nd |FPT FPT FPT
ve |FPT FPT FPT




Equitable Coloring: W[1]-hardness

Equitable Coloring
Instance: A graph G = (V,E) and an integer k.

Question: Is it possible to color the nodes of G with exactly k colors in
such a way that nodes connected by an edge receive different colors and
each color class has either size ||V |/k] or [|V |/K]?

We present a reduction from the following Bin Packing problem

Bin Packing

Instance: A collection of ¢ items having sizes a4, a,, ...,a,, @a number k of
bins, and a bin capacity B.

Question: 3 a k-partition P, ...,P, of A = {a,, a,, ...,a,} such that Zajepi a; = B,
Vi=12, ..,k



Equitable Coloring: W[1]-hardness

Gadgets:

F_ . -floweris a graph obtained by joining
a + 1 cliques of size k to a central node

F,s-flower

(k,¢,B)-chainis a sequence of k+1
Independent sets S, ... ,S,, S, With |S;| = B,
fori=1,..,k, and |S,.{| = £ + 1 where between
each pair of consecutive sets in the sequence
S, S;+1there is a complete bipartite graph (3,5, 4)-chain




Equitable Coloring:

Let <A ={ay a, ...,a,}, k,B> be an
instance of Bin-Packing

A graph G is defined as follows:
® consider the disjoint union of two
(k,¥,B)-chains plus the flowers
Fal,k7"'7 Faf,lw FB,k
® join each node in the flowers to
each node in the chains.

W[l] hardness

The graph G obtained by
<A ={21423}, k=3, B=4>



Equitable Coloring: W[1]-hardness

Lemma < A = {a,,a, ..,a,}, k,B>isa YES instance of Bin-Packing iff G is equitably

(k + 3)—colorable.
Proof.

Given a k-partition Py, ..., P, of A that solves the
Bin-Packing instance, i.e. Zalepi a; = B, we can
construct an equitable (k + 3]) —coloring c of the
nodes of G.

® We use colors k + 2 and k + 3 to properly color
the nodes in the two (k,#, B)-chains

e Usecolors 1,..,k+ 1 to properly color the nodes
in the flowers Fq .oy Foppr Fpi

® We can prove that each class of colors contains

exactly Bk +¢+1 = V(G|

nodes.
k+3

A={21423} B=4 k=3
P ={1,3} P,={2,2} P.,={4}




Equitable Coloring: W[1]-hardness

Now, let ¢ be an equitable (k + 3) —coloring
of G.

® Exactly two colors among the k + 3 are
used to color the nodes in the
(k,¥,B)-chains

® The color used to color the central node
of the flower Fj , is not used to color the
central nodes of any other flower

® By using these results and counting
arguments, we can prove that the k
classes of colors involving the central
nodes of the flowers F, ,,..., F ,,induce
a k-partition of A




Equitable Coloring: W[1]-hardness
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Equitable Coloring: W[1]-hardness

itp(G) = 2k + 3

H®




Equitable Coloring: W[1]-hardness

Theorem 2. The Equitable Coloring problem is W[1]-hard
parametrized by itp(G)

Corollary 1. The Equitable Coloring problem is W[1]-hard

parametrized by mw(G)



Algorithms: a general scheme

Let P be a problem to be solved on an input graph G.
1. lIterate by generating the whole type graph sequence of G.

2. On each graph G'in the type graph sequence, a generalized version P’ of

the original problem is defined
e with P'in G’ being equivalentto P in G

3. Optimally solve P’ on the base graph and reconstruct the solution on the
reverse type graph sequence (hence solving P in G).

If the time to solve P' on the base graph is f and the construction of the
solution for P’ can be done in poly(n) time, then the whole algorithm needs

O(f + poly(n)) time.



Algorithms: minimum dominating set
G = (V,E) Q CV

A semi-total Dominating Set of G with respect to Q, called Q-stds of G, is a

setD < V such that every node in Q is adjacent to a node in D, and every

other node is either a node in D or is adjacent to a node in D.

The set D is called an optimal Q-stds of G, ifits size is minimum among all
the Q-stds of G.

Note that @-stds of G becomes the Dominating Set of G



Algorithms: minimum dominating set




Algorithms: minimum dominating set

{'Uél): 'Us()l)} Q' ={xreV(H")|(VanQ # 0 or V, is an independent set) }




Algorithms: minimum dominating set




Algorithms: minimum dominating set




Algorithms: minimum dominating set




Algorithms: minimum dominating set




Algorithms: minimum dominating set




Algorithms: minimum dominating set

(r1) (r1) (1) (1)
H=G
Q=9 g =go 2 H=HO T
H, — Hglg (1) Q — {,,(1) ,( )} — 2 (74) Q = {b(l) U(l)}
Q — {’UQ Us } _, Ua ’(;’)5 ol = H(2) " _I (2)‘)
H, f H(2) (2) Q= {Ué ), U:(s )} > Hf _ H,(‘z) (2)
Q = {'UQ , U } Q = {7’2(2)' ‘)%2)}
D= {7;}2),v§2)} D' ={v;", v}

[ L L] 1 1
D = (o’ v}




Algorithms: minimum dominating set

) @y ) ) B )
H=0C B=a
QEI(A_ 2100 > (g —pgn 2 (r2) H=g® 2 Q =0
o =00 | [e=0" P moge @) [|e={00y P H=Hy
" A H = H®? 0= {-0(2) z;(2)} L H = H(?) ‘ Q' = {U21 7051 }
Q = {v3”, "} 2o Q ={uP vPY | D ={v’ v}
D = {}{?, v} D' = {v}?, v} |P={vn,vi2}
~ n 1D = {v{, v}




Algorithms: minimum dominating set

Theorem 4. There is an algorithm that returns a minimum dominating set

of a graph G in time 021G + poly(n)).



Conclusion and future work

lterated type partition
* EQC is W[1]-hard w.r.t. itp(G)

e EQC is W[1]-hard w.r.t. mv(G) 7 6

® Hardness drops for nd(G)

e FPT algorithms for DS, VC, Coloring w.r.t. itp(G) k 9
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Future work
® General algorithmic scheme — meta—algorithm

® FPT algorithm for Edge Dominating Set w.r.t. itp(G)



