Iterated Type Partitions

Gennaro Cordasco, University of Campania "L.Vanvitelli", Italy Luisa Gargano, University of Salerno, Italy <u>Adele Rescigno</u>, University of Salerno, Italy

Fixed Parameter Tractable (FPT)

A parameterized problem with input size n and parameter t is called fixed parameter tractable (FPT) if it can be solved in time $f(t) \cdot poly(n)$, where f is a computable function only depending on t.

Parameters

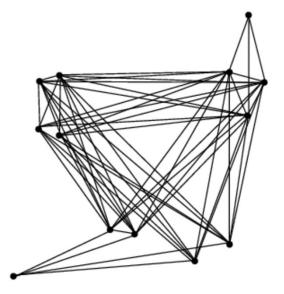
An important quality of a parameter is that it is easy to compute.

- Clique-width: the parameterized complexity of computing it is still an open problem
- Treewidth, rankwidth, and vertex cover: computing them are all NP-hard problems but they are computable in FPT time when their respective parameters are bounded
- Modular-width and neighborhood diversity: they are computable in polynomial time

Neighborhood diversity

G = (V, E)

 $u, v \in V$ have the same type iff $N(v) \setminus \{u\} = N(u) \setminus \{v\}$

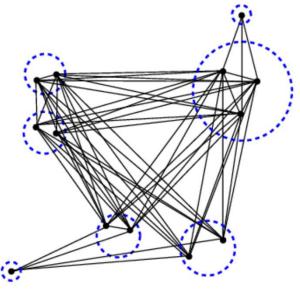


Neighborhood diversity

G = (V, E)

 $u, v \in V$ have the same type iff $N(v) \setminus \{u\} = N(u) \setminus \{v\}$

A type partition of G is a partition $V_1, V_2, ..., V_t$ of the node set V such that all the nodes in V_i have the same type, for i = 1, 2, ..., t



Neighborhood diversity

G = (V, E)

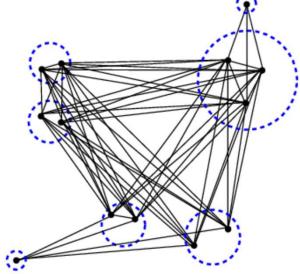
 $u, v \in V$ have the same type iff $N(v) \setminus \{u\} = N(u) \setminus \{v\}$

A type partition of G is a partition V_1, V_2, \dots, V_t of the node set V such that all the nodes in V_i have the same type,

for i = 1, 2, ..., t

 Note that by definition, each V_i induces either a clique or an independent set in G

The *neighborhood diversity* of G, nd(G), introduced by Lampis, is the minimum number t of sets in a type partition V_1, V_2, \ldots, V_t of G



nd(G) = 7

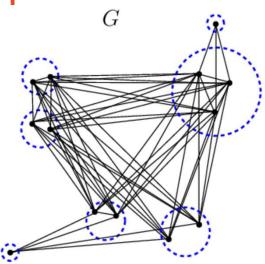
G = (V, E)

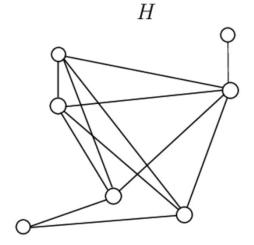
A type partition V_1, V_2, \ldots, V_t , of G

The *type graph H* of *G* is defined as

•
$$V(H) = \{1, 2, ..., t\}$$

•
$$E(H) = \{(x, y) \mid x \neq y \text{ and } for each u \in V_x, v \in V_y \text{ it holds that } (u, v) \in E(G) \}$$

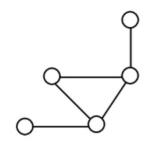




G = (V, E)

G is a *base graph* if it matches its type graph

• that is, the type partition of G consists of singletons, each representing a node in V(G), and nd(G) = |V(G)|

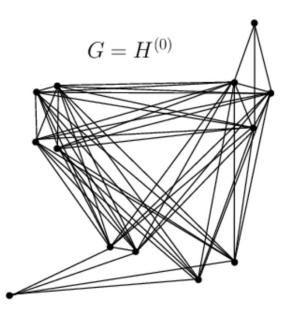


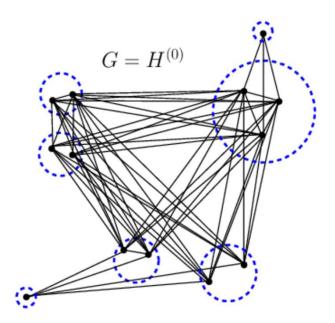
 $H^{(0)}= G$

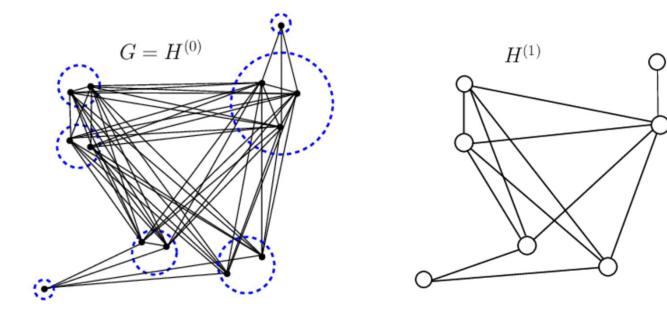
The type graph sequence of G is the graph sequence $H^{(0)} H^{(1)} \dots H^{(d)}$

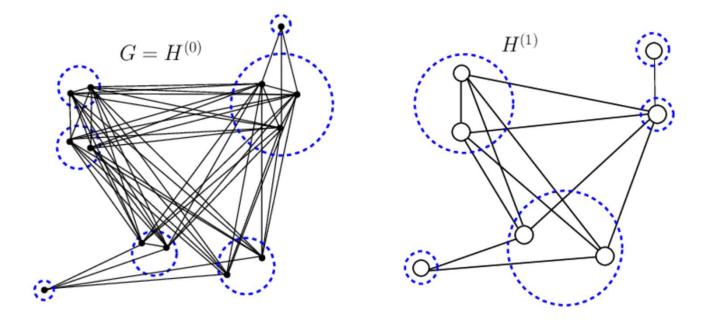
- $H^{(i)}$ denotes the type graph of $H^{(i-1)}$, for $i \ge 1$
- d is the smallest integer such that $H^{(d)}$ is a base graph

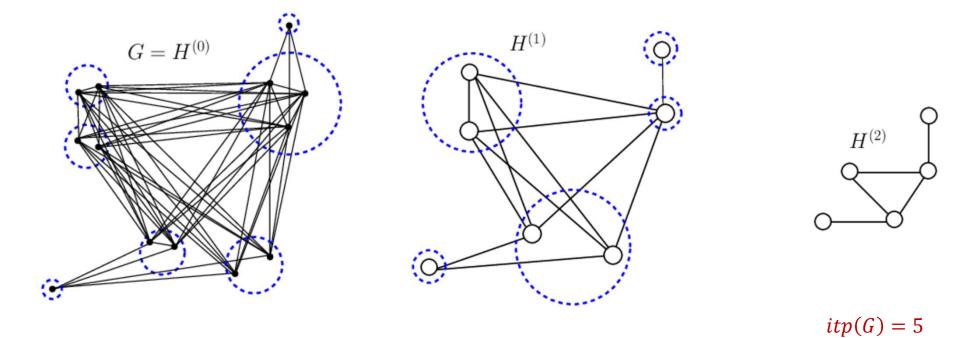
The iterated type partition of G, denoted by itp(G), is the number of nodes of $H^{(d)}$











Iterated type partition and the other parameteres

 $itp(G) \leq nd(G)$

itp(G) can be much smaller than nd(G)

Iterated type partition and the other parameteres

 $mw(G) \leq itp(G)$

Iterated type partition is a "special case" of modular-width in which the modules can only be independent sets or cliques

Iterated type partition and the other parameteres

 $itp(G) \leq 2^{vc(G)} + vc(G)$

 $cw(G) \leq itp(G) + 1$

itp(G) is incomparable to tw(G)

Iterated type partition our results

Theorem 1. There exists a polynomial time algorithm which, for any input graph G computes the type graphs sequence of G and, consequently, finds the value itp(G).

Iterated type partition our results

	EQC	DS, VC	Coloring
CW	W[1]-hard	FPT	W[1]-hard
mw	W[1]-hard	FPT	FPT
itp	W[1]-hard	$\begin{array}{c} FPT \\ \mathcal{O}(2^{itp(G)} + poly(n)) \end{array}$	$ \begin{array}{l} FPT \\ O(itp(G)^{2,5 \ itp(G) + o(itp(G))} \log n + \ poly(n)) \end{array} \end{array} $
nd	FPT	FPT	FPT
vc	FPT	FPT	FPT

Equitable Coloring

Instance: A graph G = (V, E) and an integer k.

Question: Is it possible to color the nodes of G with exactly k colors in such a way that nodes connected by an edge receive different colors and each color class has either size [|V|/k] or [|V|/k]?

We present a reduction from the following Bin Packing problem

Bin Packing

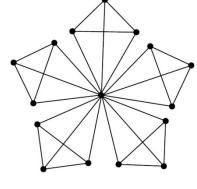
Instance: A collection of ℓ items having sizes a_1, a_2, \dots, a_ℓ , a number k of bins, and a bin capacity B.

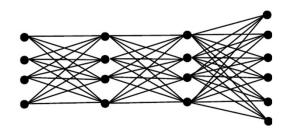
Question: $\exists a k$ -partition P_1, \dots, P_k of $A = \{a_1, a_2, \dots, a_\ell\}$ such that $\sum_{a_j \in P_i} a_j = B$, $\forall i = 1, 2, \dots, k$

Gadgets:

 $F_{a,k}$ -flower is a graph obtained by joining a + 1 cliques of size k to a central node

 (k, ℓ, B) -chain is a sequence of k + 1independent sets $S_1, \ldots, S_k, S_{k+1}$ with $|S_i| = B$, for i = 1, ..., k, and $|S_{k+1}| = \ell + 1$ where between each pair of consecutive sets in the sequence S_i, S_{i+1} there is a complete bipartite graph



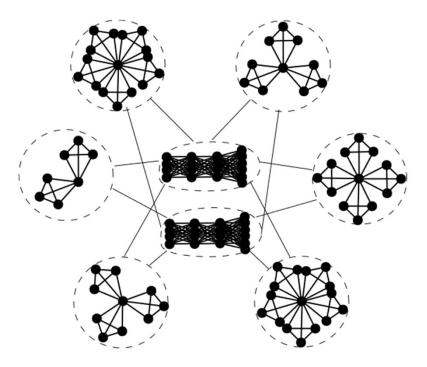


(3, 5, 4)-chain

Let $< A = \{a_1, a_2, ..., a_\ell\}, k, B > be an$ instance of Bin-Packing

A graph G is defined as follows:

- consider the disjoint union of two (k, ℓ, B) -chains plus the flowers $F_{a1,k}, \ldots, F_{a\ell,k}, F_{B,k}$
- join each node in the flowers to each node in the chains.



The graph G obtained by $< A = \{2, 1, 4, 2, 3\}, k = 3, B = 4 >$

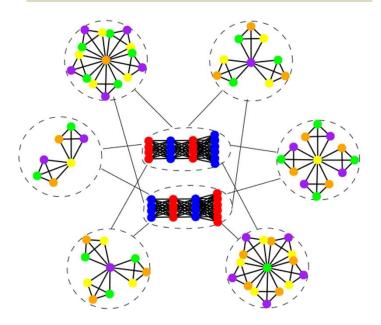
Lemma $\langle A = \{a_1, a_2, ..., a_\ell\}, k, B \rangle$ is a YES instance of Bin-Packing iff G is equitably (k + 3)-colorable.

Proof.

Given a *k*-partition P_1, \ldots, P_k of *A* that solves the Bin-Packing instance, i.e. $\sum_{a_j \in P_i} a_j = B$, we can construct an equitable (k + 3) -coloring *c* of the nodes of G.

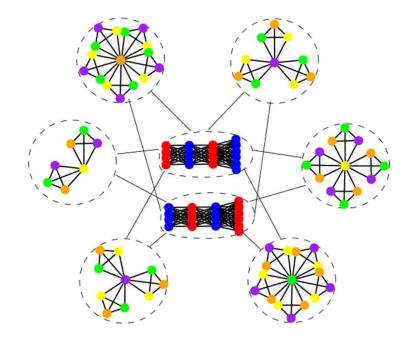
- We use colors k + 2 and k + 3 to properly color the nodes in the two (k, ℓ, B)-chains
- Use colors 1, ..., k + 1 to properly color the nodes in the flowers $F_{a1,k}$,..., $F_{a\ell,k}$, $F_{B,k}$
- We can prove that each class of colors contains exactly $Bk + \ell + 1 = \frac{|V(G)|}{k+3}$ nodes.

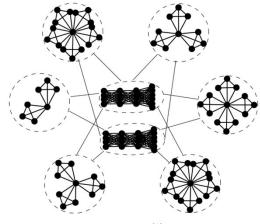
 $A = \{2, 1, 4, 2, 3\} \quad B = 4 \quad k = 3$ $P_1 = \{1, 3\} \quad P_2 = \{2, 2\} \quad P_3 = \{4\}$



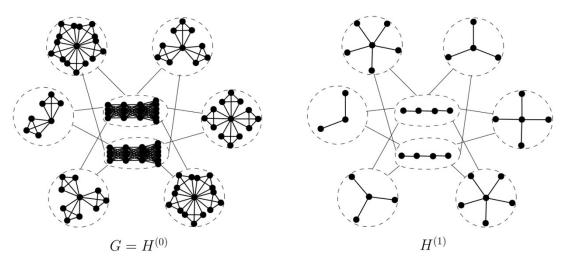
Now, let c be an equitable (k + 3) –coloring of G.

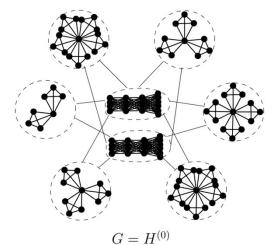
- Exactly two colors among the k + 3 are used to color the nodes in the (k, ℓ, B)-chains
- The color used to color the central node of the flower $F_{B,k}$ is not used to color the central nodes of any other flower
- By using these results and counting arguments, we can prove that the k classes of colors involving the central nodes of the flowers $F_{a1,k}, \ldots, F_{a\ell,k}$ induce a k-partition of A

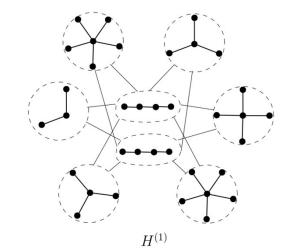


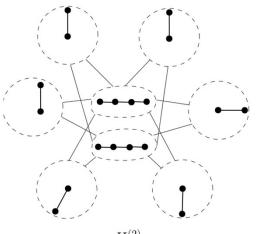


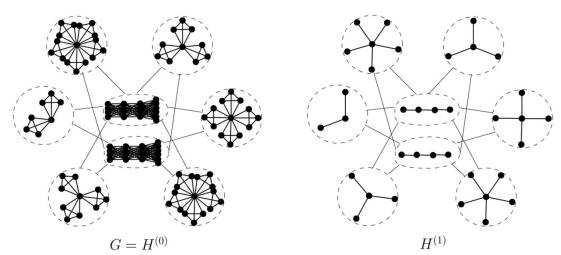
 $G = H^{(0)}$

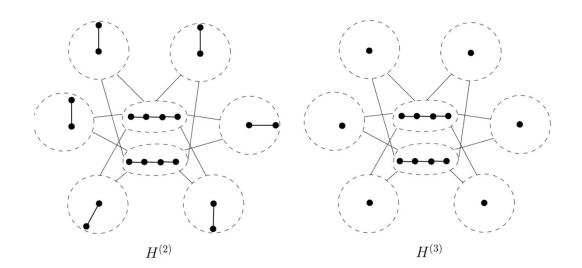


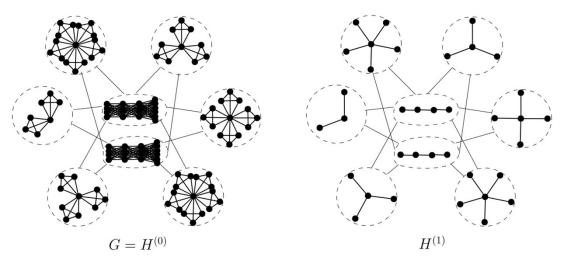


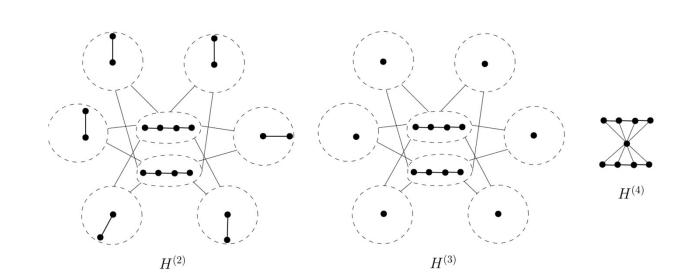












itp(G) = 2k + 3

Theorem 2. The Equitable Coloring problem is W[1]-hard parametrized by *itp(G*)

Corollary 1. The Equitable Coloring problem is W[1]-hard parametrized by mw(G)

Algorithms: a general scheme

Let P be a problem to be solved on an input graph G.

- 1. Iterate by generating the whole type graph sequence of G.
- 2. On each graph G' in the type graph sequence, a generalized version P' of the original problem is defined
 - with P' in G' being equivalent to P in G
- **3.** Optimally solve P' on the base graph and reconstruct the solution on the reverse type graph sequence (hence solving P in G).

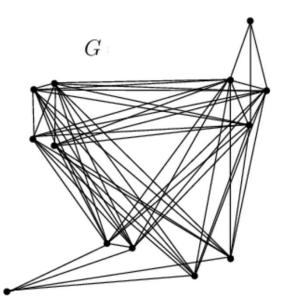
If the time to solve P' on the base graph is f and the construction of the solution for P' can be done in poly(n) time, then the whole algorithm needs O(f + poly(n)) time.

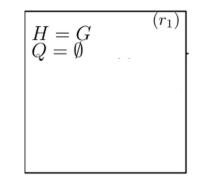
 $G = (V, E) \qquad \qquad Q \subseteq V$

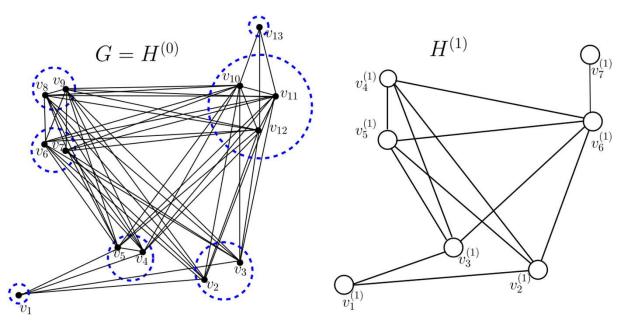
A semi-total Dominating Set of G with respect to Q, called Q-stds of G, is a set $D \subseteq V$ such that every node in Q is adjacent to a node in D, and every other node is either a node in D or is adjacent to a node in D.

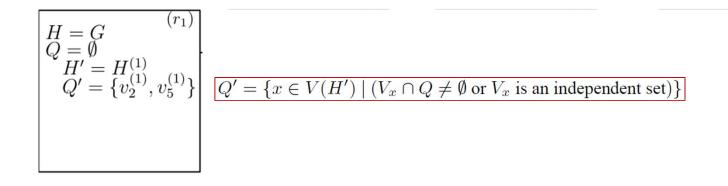
The set *D* is called an optimal *Q*-stds of *G*, if its size is minimum among all the *Q*-stds of *G*.

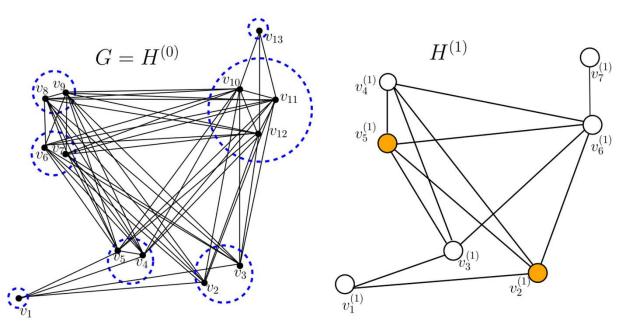
Note that Ø-stds of G becomes the Dominating Set of G



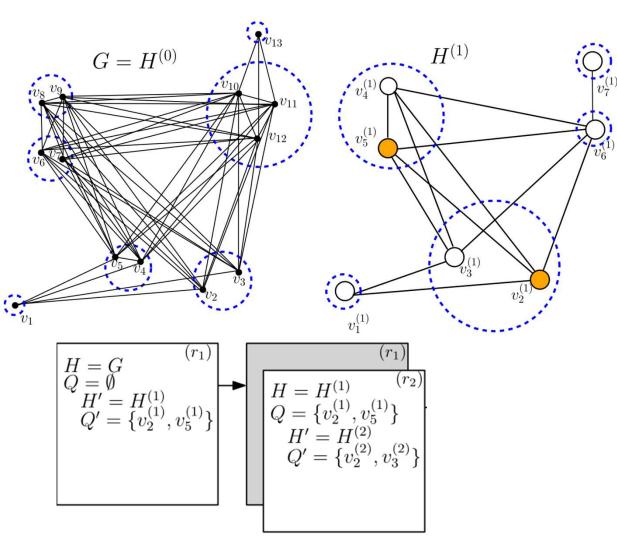


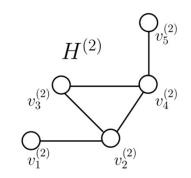


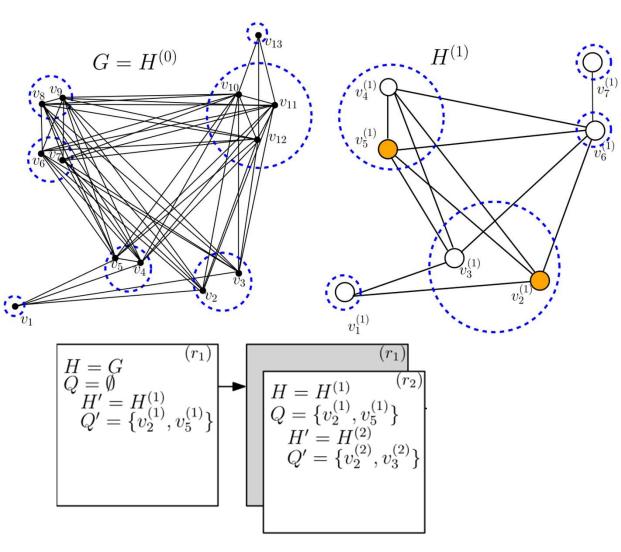


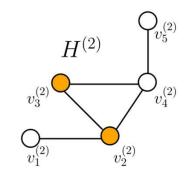


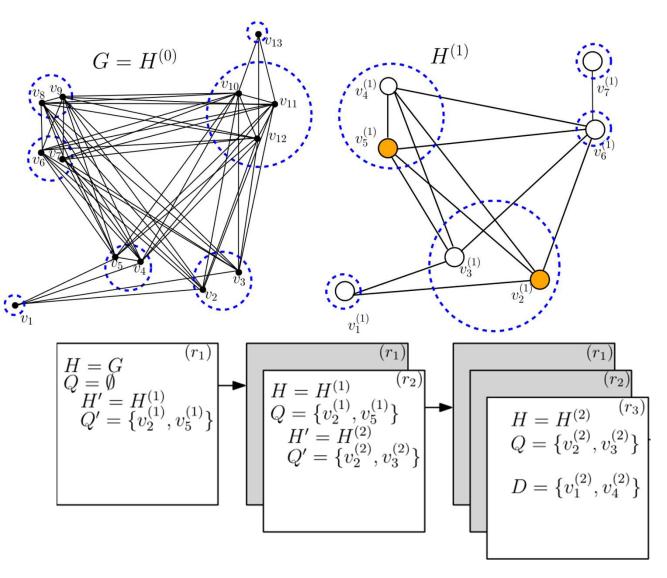
$$\begin{array}{c}
H = G & (r_1) \\
Q = \emptyset \\
H' = H^{(1)} \\
Q' = \{v_2^{(1)}, v_5^{(1)}\}
\end{array}$$

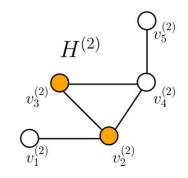


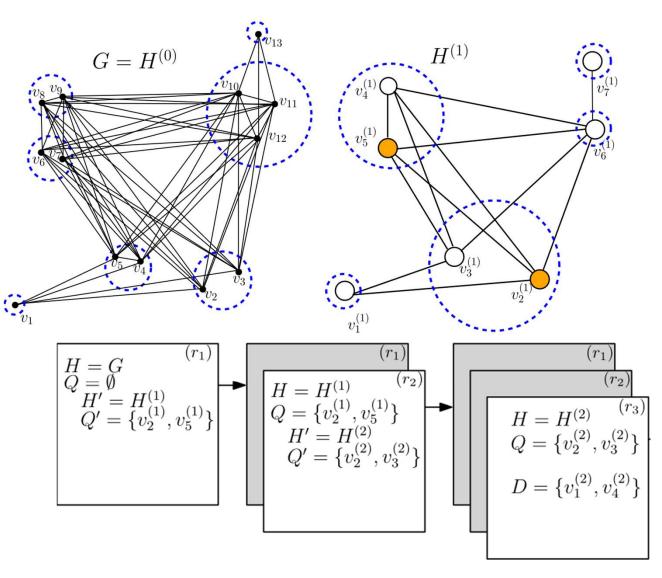


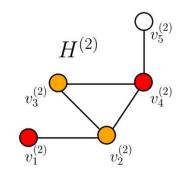


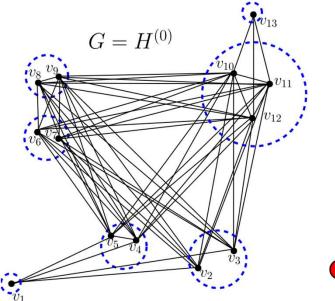


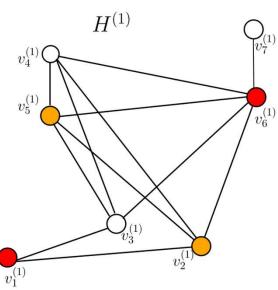


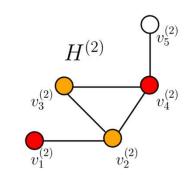




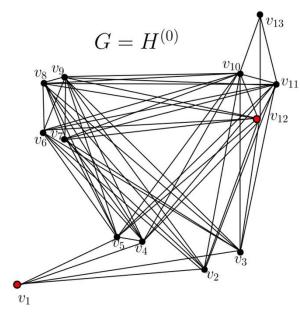


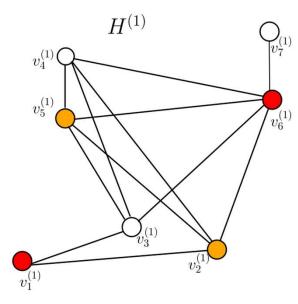


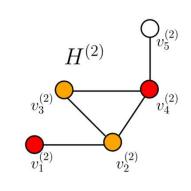




$$\begin{array}{c} H = G & (r_{1}) \\ Q = \emptyset \\ H' = H^{(1)} \\ Q' = \{v_{2}^{(1)}, v_{5}^{(1)}\} \\ Q' = \{v_{2}^{(1)}, v_{5}^{(1)}\} \\ H' = H^{(2)} \\ Q' = \{v_{2}^{(2)}, v_{3}^{(2)}\} \\ D = \{v_{1}^{(2)}, v_{4}^{(2)}\} \\ D = \{v_{1}^{(2)}, v_{4}^{(2)}\} \\ D = \{v_{1}^{(1)}, v_{6}^{(1)}\} \\ D = \{v_{1}^{(1)}, v_{6}^{(1)}\} \\ \end{array}$$







 $\begin{array}{c} H = G & (r_{1}) \\ Q = \emptyset \\ H' = H^{(1)} \\ Q' = \{v_{2}^{(1)}, v_{5}^{(1)}\} \\ U' = \{v_{2}^{(1)}, v_{5}^{(1)}\} \\ U' = \{v_{2}^{(2)}, v_{5}^{(2)}\} \\ U' = \{v_{2}^{(2)}, v_{3}^{(2)}\} \\ U' = \{v_{2}^{(2)}, v_{3}^{(2)}\} \\ U' = \{v_{2}^{(2)}, v_{3}^{(2)}\} \\ U' = \{v_{2}^{(1)}, v_{4}^{(2)}\} \\ U' = \{v_{1}^{(2)}, v_{4}^{(2)}\} \\ U' = \{v_{1}^{(1)}, v_{6}^{(1)}\} \\ U = \{v_{1}^{(1)}, v_{4}^{(2)}\} \\ U = \{v_{1}^{(1)}, v_{4}^{(1)}\} \\ U = \{v_{1}^{(1)}, v_{6}^{(1)}\} \\ U = \{v_{$

Theorem 4. There is an algorithm that returns a minimum dominating set of a graph G in time $O(2^{itp(G)} + poly(n))$.

Conclusion and future work

bouk

Iterated type partition

- EQC is W[1]-hard w.r.t. *itp*(G)
 - EQC is W[1]-hard w.r.t. mv(G)
 - Hardness drops for *nd*(*G*)
- FPT algorithms for DS, VC, Coloring w.r.t. *itp(G)*

Future work

- General algorithmic scheme \rightarrow meta-algorithm
- FPT algorithm for Edge Dominating Set w.r.t. *itp(G)*