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Fixed Parameter Tractable (FPT)

A parameterized problem with input size and parameter is called 

fixed parameter tractable (FPT) if  it can be solved in time ・ , 

where is a computable function only depending on .



Parameters
An important quality of  a parameter is that it is easy to compute.

 Clique-width: the parameterized complexity of  computing it is still an open 

problem

 Treewidth, rankwidth, and vertex cover:  computing them are all NP-hard 

problems but they are computable in FPT time when their respective 

parameters are bounded

 Modular-width and neighborhood diversity: they are computable in 

polynomial time
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Neighborhood diversity

have the same type iff \ \

A type partition of  is a partition 1 2 𝑡 
of  the node 

set such that all the nodes in 𝑖 have the same type, 

for 

 Note that by definition, each 𝑖 induces either a clique or 
an independent set in G

The neighborhood diversity of  introduced by Lampis, is the 
minimum number of  sets in a type partition 1 2 𝑡 of  



A type partition 1 2 𝑡, of  

The type graph of  is defined as


 𝑥 𝑦

Iterated type partition



Iterated type partition

is a base graph if  it matches its type graph

 that is, the type partition of  consists of  singletons, 
each representing a node in , and 



Iterated type partition
(0)

The type graph sequence of  is the graph sequence (0) (1) (𝑑)

 (𝑖) denotes the type graph of (𝑖-1) for
 is the smallest integer such that (𝑑)  is a base graph 

The iterated type partition of  , denoted by , is the number of  

nodes of  (𝑑) 
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Iterated type partition

𝑖𝑡𝑝 𝐺 = 5



Iterated type partition
and the other parameteres

can be much smaller than 



Iterated type partition is a “special case” of  modular-width in which the 

modules can only be independent sets or cliques

Iterated type partition       
and the other parameteres



𝑣𝑐

is incomparable to 

Iterated type partition
and the other parameteres



Iterated type partition

Theorem 1. There exists a polynomial time algorithm which, for any input graph G 

computes the type graphs sequence of G and, consequently, finds the value .

our results
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Equitable Coloring:   W[1]-hardness
Equitable Coloring 

Instance: A graph G = (V,E) and an integer k.

Question: Is it possible to color the nodes of  G with exactly k colors in 
such a way that nodes connected by an edge receive different colors and 
each color class has either size |V |/k or |V |/k ?

Bin Packing
Instance: A collection of  items having sizes 1 2 ℓ a number of         
bins, and a bin capacity .
Question: a -partition 1 𝑘 of  { 1 2 ℓ} such that  𝑗


∈


= B, 

We present a reduction from the following Bin Packing problem



Equitable Coloring:   W[1]-hardness
Gadgets: 

𝑎, 𝑘 
-flower is a graph obtained by joining 

cliques of  size to a central node

𝐹4,3
–flower 

chain is a sequence of  
independent sets 1 𝑘 𝑘+1 

with 𝑖 , 
for , and 𝑘+1 where between 
each pair of  consecutive sets in the sequence 

𝑖 𝑖+1 
there is a complete bipartite graph (3, 5, 4)–chain 



Equitable Coloring:   W[1]-hardness
Let { 1 2 ℓ}, > be an 
instance of  Bin-Packing

A graph G is defined as follows:
 consider the disjoint union of  two 

chains  plus the flowers 
𝑎1,𝑘 

,…, 𝑎ℓ,𝑘 
, 𝐵,𝑘 

 join each node in the flowers to 
each node in the chains.

The graph G obtained by 
< 𝐴 = {2,1,4, 2,3}, k = 3,  𝐵 = 4 > 



Equitable Coloring:   W[1]-hardness

Given a -partition 1 𝑘 of  that solves the 
Bin-Packing instance, i.e.  𝑗


∈


= B, we can 

construct an equitable coloring of  the 
nodes of  G.

 We use colors and to properly color 
the nodes in the two chains

 Use colors to properly color the nodes 
in the flowers 𝑎1,𝑘 

,…, 𝑎ℓ,𝑘 
, 𝐵,𝑘 

 We can prove that each class of  colors contains 
exactly | ீ |

ାଷ
nodes.

Lemma { 1 2 ℓ}, > is a YES instance of Bin-Packing iff G is equitably 
–colorable.

Proof. 
   𝐴 = {2,1,4, 2,3}       𝐵 = 4      𝑘 = 3
𝑃𝟏 = 1,3   𝑃𝟐 = 2,2    𝑃𝟑 = {4}



Equitable Coloring:   W[1]-hardness

Now, let be an equitable coloring 
of  G.
 Exactly two colors among the are 

used to color the nodes in the 
chains 

 The color used to color the central node 
of  the flower 𝐵,𝑘 is not used to color the 
central nodes of  any other flower

 By using these results and counting 
arguments, we can prove that the 
classes of  colors involving the central 
nodes of  the flowers 𝑎1,𝑘 

,…, 𝑎ℓ,𝑘 
induce 

a -partition of  A
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Equitable Coloring:   W[1]-hardness

i



Equitable Coloring:   W[1]-hardness

Theorem 2. The Equitable Coloring problem is W[1]-hard 

parametrized by 

Corollary 1. The Equitable Coloring problem is W[1]-hard 

parametrized by 



Algorithms: a general scheme
Let P be a problem to be solved on an input graph G.

1. Iterate by generating the whole type graph sequence of  G.

2. On each graph G′ in the type graph sequence, a generalized version P′ of  

the original problem is defined 
 with P′ in G′ being equivalent to P in G

3. Optimally solve P′ on the base graph and reconstruct the solution on the 

reverse type graph sequence (hence solving P in G).

If  the time to solve P′ on the base graph is and the construction of  the 

solution for P′ can be done in time, then the whole algorithm needs 

time.



Algorithms: minimum dominating set 

A semi-total Dominating Set of with respect to , called -stds of , is a 

set such that every node in is adjacent to a node in , and every 

other node is either a node in or is adjacent to a node in . 

The set is called an optimal  -stds of , if its size is minimum among all 

the -stds of .

Note that -stds of becomes the Dominating Set of 
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Algorithms: minimum dominating set 



Algorithms: minimum dominating set 

Theorem 4. There is an algorithm that returns a minimum dominating set 

of a graph in time 𝑖𝑡𝑝



Conclusion and future work

Iterated type partition

 EQC is W[1]-hard w.r.t.

 EQC is W[1]-hard w.r.t.
 Hardness drops for 

 FPT algorithms for DS, VC, Coloring w.r.t. 

Future work 

 General algorithmic scheme  meta algorithm 

 FPT algorithm for Edge Dominating Set w.r.t. 


