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Matching

Definition

A subset M ⊆ E of edges of a graph G = (V,E) is a called a matching if
no two edges in M are adjacent, that is, no two edges of M share a
common vertex.
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Maximum matching problem

To find a matching of maximum cardinality.

Maximum matching problem is Polynomial Time solvable in general
graphs.a

aEdmonds, Jack. ”Maximum matching and a polyhedron with 0, 1-vertices.” Journal of research of the National
Bureau of Standards B 69.125-130 (1965): 55-56.
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Acyclic Matching

End points of a matching M are called M -saturated vertices.

Definition

A matching M is said to be an acyclic matching if the subgraph of G
induced by the M -saturated vertices of G, i.e. G[V (M)] is acyclic.
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Max-Acy-Matching problem

To find an acyclic matching of maximum size.

Max-Acy-Matching-Decide is NP-complete in general graphs.a

aWayne Goddard, Sandra M Hedetniemi, Stephen T Hedetniemi, and Renu Laskar. Generalized
subgraph-restricted matchings in graphs. Discrete mathematics, 293(1):129-138, 2005.
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Known Results

− Max-Acy-Matching-Decide is NP-complete for
• Bipartite graphs. 1

• Perfect elimination bipartite graphs. 1

− Max-Acy-Matching problem is Polynomial time solvable for
• Bipartite permutation graphs. 1 (O(m+ n))
• P4-free graphs, 2P3-free graphs. 2 (O(m+ n))
• Chordal graphs. 3 O(n7) (solved under the name of r-degenerate
matching)

− Characterization of graphs for which every maximum matching is
acyclic. 2

1B S Panda and Dinabandhu Pradhan. Acyclic matchings in subclasses of bipartite graphs. Discrete Mathematics,
Algorithms and Applications, 4(04):1250050, 2012.

2Maximilian Fürst and Dieter Rautenbach. On some hard and some tractable cases of the maximum acyclic matching
problem. Annals of Operations Research, 279(1- 2):291-300, 2019.

3Julien Baste and Dieter Rautenbach. Degenerate matchings and edge colorings. Discrete Applied Mathematics, 239:38-44,
2018.
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Our Results

Max-Acy-Matching-Decide is shown to be NP-complete for
• Comb-convex bipartite graphs
• Dually chordal graphs

Max-Acy-Matching problem is shown to be linear time solvable for
• Split graphs
• Proper interval graphs

• Max-Acy-Matching problem is hard to approximate within a ratio of
n1−ε for any ε > 0, unless P = NP

• Max-Acy-Matching problem is APX-complete for 2k + 1-regular graphs
for k ≥ 3.
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Motivation

Dually chordal graphs

Strongly chordal graphs

Chordal graphs

Split graphs Proper interval graphs

O(n7) NPC

O(m+ n) O(m+ n) P

Bipartite graphs

Tree-convex bip. graphs

Triad-convex bip. graphs

Comb-convex bip. graphs
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?

NPC

Star-convex bip. graphs
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No approximation results on Max-Acy-Matching problem are known.

(IIT Delhi) June 9, 2020 12 / 46



Our Results

Max-Acy-Matching-Decide is shown to be NP-complete for
• Comb-convex bipartite graphs
• Dually chordal graphs

Max-Acy-Matching problem is shown to be linear time solvable for
• Split graphs
• Proper interval graphs

• Max-Acy-Matching problem is hard to approximate within a ratio of
n1−ε for any ε > 0, unless P = NP .

• Max-Acy-Matching problem is APX-complete for 2k + 1-regular graphs
for k ≥ 3.

(IIT Delhi) June 9, 2020 13 / 46



Definition

Comb

A comb is a graph obtained by attaching a pendant vertex (tooth) to
every vertex of a path (backbone).
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Comb-convex bipartite graph

Definition

A bipartite graph G = (X,Y,E) is said to be tree-convex, if a tree
T = (X,EX) can be defined, such that for every vertex y in Y , the N(y)
induces a subtree of T .
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If T is a comb then G is called a comb-convex bipartite graph.
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Comb-convex bipartite graphs (continued...)

Theorem

Max-Acy-Matching-Decide is NP-complete for comb-convex bipartite
graphs.

Outline of proof:

Max-Acy-Matching-Decide ∈ NP.

Polynomial time reduction from Max-Acy-Matching-Decide for bipartite
graphsa.

Construct H = (XH , YH , EH) from G = (X,Y,E) as follows:

XH = X ∪X ′, where X ′ = {x′i | xi ∈ X}, YH = Y , and EH = E ∪ E′,
where E′ = {x′iy | x′i ∈ X ′ and y ∈ Y }.

aB S Panda and Dinabandhu Pradhan. Acyclic matchings in subclasses of bipartite graphs. Discrete
Mathematics, Algorithms and Applications, 4(04):1250050, 2012.
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Comb-convex bipartite graphs (continued...)
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Figure: Construction of H from G

H is a comb-convex bipartite graph if X ′ is taken as the backbone and X
is taken as the teeth of a comb C.

Claim:

G has an acyclic matching of size ≥ k ⇔ H has an acyclic matching of
size ≥ k.
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Our Results

Max-Acy-Matching-Decide is shown to be NP-complete for
• Comb-convex bipartite graphs
• Dually chordal graphs

Max-Acy-Matching problem is shown to be linear time solvable for
• Split graphs
• Proper interval graphs

• Max-Acy-Matching problem is hard to approximate within a ratio of
n1−ε for any ε > 0, unless P = NP .

• Max-Acy-Matching problem is APX-complete for 2k + 1-regular graphs
for k ≥ 3.
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Split graphs

A graph G = (V,E) is called a split graph if its vertex set V can be
partitioned into two sets I and C such that I is an independent set and C
is a clique.
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Split graphs
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Max-Acy-Matching in split graphs

Lemma

Let G be a split graph. If M is an acyclic matching in G, then
1 ≤ |M | ≤ 2.

Outline of proof.

• Let {a1b1, a2b2, a3b3} ⊆M for some ai, bi ∈ V , 1 ≤ i ≤ 3.
• I is an independent set =⇒ b1, b2, b3 ∈ C.
• G[{b1, b2, b3}] forms a cycle.
CONTRADICTION!!
•Thus, |M | ≤ 2.
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Max-Acy-Matching in split graphs (continued...)

Lemma

Let G be a split graph and let M be a max-acy-matching in G.
Then, |M | = 2 ⇔ there exist a pair of vertices vi, vj ∈ I s.t.
N(vi) \N(vj) 6= ∅ and N(vj) \N(vi) 6= ∅.

Outline of proof.

⇒ Let M = {aibi, ajbj}.
Let ai, aj ∈ C and bi, bj ∈ I.
Since G[{ai, aj , bi, bj}] is acyclic and aibi, ajbj , aiaj ∈ E.
So, ai /∈ N(bj) and aj /∈ N(bi).
Hence, bi, bj ∈ I is the required pair of vertices.
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Max-Acy-Matching in split graphs (continued...)

Lemma

Let G = (V,E) be a split graph and let M be a maximum acyclic
matching in G. Then, |M | = 2 if and only if there exist a pair of vertices
vi, vj ∈ I such that N(vi) \N(vj) 6= ∅ and N(vj) \N(vi) 6= ∅.

Outline of proof.

⇐ Let v1, v2 ∈ I s.t. N(v1) \N(v2) 6= φ and N(v2) \N(v1) 6= φ.
Let c1 ∈ N(v1) \N(v2) and c2 ∈ N(v2) \N(v1).
Define M = {v1c1, v2c2}.
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Max-Acy-Matching in split graphs (continued...)

Definition

A split graph G = (V,E) is called a threshold graph if the vertices in I
can be linearly ordered, say (v1, v2, . . . v|I|), such that
N(v1) ⊆ N(v2) ⊆ . . . ⊆ N(v|I|).

Theorem

Let G = (V,E) be a split graph and let M be a max-acy-matching in G.
Then, |M | = 1 ⇔ G is a threshold graph.
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Our Results

Max-Acy-Matching-Decide is shown to be NP-complete for
• Comb-convex bipartite graphs
• Dually chordal graphs

Max-Acy-Matching problem is shown to be linear time solvable for
• Split graphs
• Proper interval graphs

• Max-Acy-Matching problem is hard to approximate within a ratio of
n1−ε for any ε > 0, unless P = NP .

• Max-Acy-Matching problem is APX-complete for 2k + 1-regular graphs
for k ≥ 3.
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Approximation hardness

µac(G) ≤ µ(G) ≤ n
2

Observation:

Max-Acy-Matching problem can be approximated within a factor of n in
polynomial time.

To show:

Max-Acy-Matching problem cannot be approximated within a factor of
n1−ε for any ε > 0, unless P = NP .

(IIT Delhi) June 9, 2020 26 / 46



Approximation hardness

µac(G) ≤ µ(G)

≤ n
2

Observation:

Max-Acy-Matching problem can be approximated within a factor of n in
polynomial time.

To show:

Max-Acy-Matching problem cannot be approximated within a factor of
n1−ε for any ε > 0, unless P = NP .

(IIT Delhi) June 9, 2020 26 / 46



Approximation hardness

µac(G) ≤ µ(G) ≤ n
2

Observation:

Max-Acy-Matching problem can be approximated within a factor of n in
polynomial time.

To show:

Max-Acy-Matching problem cannot be approximated within a factor of
n1−ε for any ε > 0, unless P = NP .

(IIT Delhi) June 9, 2020 26 / 46



Approximation hardness

µac(G) ≤ µ(G) ≤ n
2

Observation:

Max-Acy-Matching problem can be approximated within a factor of n in
polynomial time.

To show:

Max-Acy-Matching problem cannot be approximated within a factor of
n1−ε for any ε > 0, unless P = NP .

(IIT Delhi) June 9, 2020 26 / 46



Approximation hardness

µac(G) ≤ µ(G) ≤ n
2

Observation:

Max-Acy-Matching problem can be approximated within a factor of n in
polynomial time.

To show:

Max-Acy-Matching problem cannot be approximated within a factor of
n1−ε for any ε > 0, unless P = NP .

(IIT Delhi) June 9, 2020 26 / 46



Approximation hardness (continued...)

Theorem MAX-IS

The Max-Ind-Set problem for a graph G cannot be approximated within a
factor of n1−ε for any ε > 0, unless P = NP . a

aDavid Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic number. In
Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pages 681-690, 2006.
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Approximation hardness (continued...)

Construction A:

Given: G = (V,E), an instance of the Max-Ind-Set problem.
Construct: H = (VH , EH), an instance of the Max-Acy-Matching
problem.

VH = V ∪ V ′, where V ′ = {v′i | vi ∈ V }.
EH = E ∪ {viv′i | 1 ≤ i ≤ n} ∪ {viv′j | vivj ∈ E} ∪ {v′iv′j | vivj ∈ E}.

b b b b
v1 v2 v3 v4

G
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Claim:

G has an independent set of size ≥ k ⇔ H has an acy-matching of size
≥ k.
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Types of Edges:

1 Type-I = {viv′i | vi ∈ V and v′i ∈ V ′}.
2 Type-II = {vivj | vi, vj ∈ V }.
3 Type-III = {v′ivj | v′i ∈ V ′ and vj ∈ V }.
4 Type-IV = {v′iv′j | v′i, v′j ∈ V ′}.

b b b b

v1 v2 v3 v4

b b b b

bbbb

v1 v2 v3 v4

v′1 v′2 v′3 v′4

G H
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Approximation hardness (continued...)

Lemma 1

There exists a max-acy-matching in H containing edges of Type-I and
Type-II only.

Idea of proof:

Type-IV edge → Type-III edge → Type-II edge
v′iv
′
j → viv

′
j or (v′ivj) → vivj
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Approximation hardness (continued...)

Lemma 1

There exists a max-acy-matching in H containing edges of Type-I and
Type-II only.

Outline of proof:

• Let v′iv
′
j ∈M . (v′iv

′
j is of Type-IV .)

• M is acyclic =⇒ both vi and vj are unsaturated by M .
• Let M ′ = (M \ {v′iv′j}) ∪ {v′ivj}.
• Assume that G[VH(M ′)] contains a cycle C.
• C must contain the vertex vj .
• Let vjua, vjub ∈ E(C). Since N [vj ] = N [v′j ], v

′
jua, v

′
jub ∈ EH . Now,

C ′ = (C \ {vjua, vjub}) ∪ {v′jua, v′jub} is a cycle in G[VH(M)].
CONTRADICTION!!
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Approximation hardness (continued...)

Lemma 2

There exists a max-acy-matching in H containing edges of Type-I only.

Outline of proof:

Recall: Type-I = {viv′i | vi ∈ V and v′i ∈ V ′}.,
Type-II = {vivj | vi, vj ∈ V }.
In G[VH(M)], edges of Type-I will form a disjoint union of K ′2s and
edges of Type-II will form a forest.
∃ pendant edge of Type-II (say vavb) in G[VH(M)].
Let d(vb) = 1 in G[VH(M)].
Claim: M ′ = (M \ {vavb}) ∪ {vbv′b} is an acyclic matching in H.
If M ′ is not acyclic =⇒ G[VH(M ′)] contains a cycle C.
C must contain the vertex v′b. Let v′bvi, v

′
bvj ∈ E(C) for some vi, vj ∈ V .

Since N [vb] = N [v′b], vbvi, vbvj ∈ EH implying that d(vb) ≥ 2 in
G[VH(M ′)].
CONTRADICTION!!!
Hence, M ′ is acyclic.
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Approximation hardness (continued...)

Lemma 3

G has an independent set of size ≥ k ⇔ H has an acy-matching of size
≥ k.

Outline of proof:

⇒ Let I = {v1, v2, . . . , vl} be an independent set in G of size ≥ k.
Define M = {v1v′1, v2v′2, . . . , vlv′l} in H.
⇐ Let M = {e1, e2, . . . , el} be an acyclic matching in H of size at least k.
By Lemma 2, there exists a matching M ′ such that |M ′| = |M | and M ′

has edges of Type-I only.
Define a set I = {vi | viv′i ∈M ′}.

Corollary 1

G has a maximum independent set of size k ⇔ H has a maximum acyclic
matching of size k.
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Approximation hardness (continued...)

I∗= maximum independent set in G.
M∗= maximum acyclic matching in H.

Assumption:

Max-Acy-Matching problem can be approximated within a ratio α ≥ 1 by
using an algorithm ALG, where α = n1−ε

′
for some fixed ε′ > 0.

Note:

Here, n̄ = |VH |.
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Outline of the Proof(continued):

|M∗(H)| ≤ α|MALG(H)|. (By Assumption)

|I∗(G)| = |M∗(H)|. (By Corollary 1)

There exists IALG(G) such that |MALG(H)| = |IALG(G)|. (By Lemma 3)

Hence, |I∗(G)| ≤ α|IALG(G)| = n1−ε
′ |IALG(G)| = (2n)1−ε

′ |IALG(G)| =
(2)1−ε

′
(n)1−ε

′ |IALG(G)|.

If we choose ε, such that 21−ε
′
< nε

′−ε, then
|I∗(G)| < (n)ε

′−ε(n)1−ε
′ |IALG(G)| = (n)1−ε|IALG(G)|.

Hence, |I∗(G)| < (n)1−ε|IALG(G)|, which leads to a contradiction to
Theorem Max-IS.

Therefore, the Max-Acy-Matching problem cannot be approximated within
a factor of n1−ε for any ε > 0, unless P = NP .
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APX-completeness

Lemma 4

The Max-Acy-Matching problem for a k-regular graph G can be
approximated with an approximation ratio of 2k(k−1)+1

k , where k is a
constant.

Outline of proof:

Pick an edge in Mac and remove its end points
In each step, we are removing at most k2 edges.
So, kn

2[2k(k−1)+1] ≤ |Mac|.
Also, µac ≤ n

2 .

Hence, µac
|Mac| ≤

2k(k−1)+1
k .
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APX-completeness (continued...)

Theorem
a b The Max-Ind-Set problem is APX-complete for k-regular graphs for
k ≥ 3.

aPaola Alimonti and Viggo Kann. Some apx-completeness results for cubic graphs. Theoretical Computer
Science, 237(1-2):123-134, 2000

bChristos H Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and complexity classes.
Journal of computer and system sciences, 43(3):425-440, 1991.

Observation

If G is a k-regular graph in Construction A, then the constructed graph H
is a 2k + 1-regular graph for k ≥ 3.
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APX-completeness (continued...)

Theorem

The Max-Acy-Matching problem is APX-complete for 2k + 1-regular
graphs for k ≥ 3, where k is a constant.

Outline of proof:

The Max-Acy-Matching problem for 2k + 1-regular graphs for k ≥ 3
belongs to APX by Lemma 4.
Given a k-regular graph G = (V,E), where V = {v1, v2, . . . , vn}.
Construct a graph H = (VH , EH), an instance of the Max-Acy-Matching
problem by Construction A.
By Lemma 3 and Corollary 1, the reduction described in Construction A is
an L-reduction with α = 1 and β = 1.
Hence, proved.
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Future Scope

• Better approximation algorithms for bipartite graphs.
• Parameterized complexity.

(IIT Delhi) June 9, 2020 43 / 46



References
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Thank You!!

Questions??

(IIT Delhi) June 9, 2020 46 / 46


