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Definitions




A subset M C E of edges of a graph G = (V, E) is a called a matching if
common vertex.

no two edges in M are adjacent, that is, no two edges of M share a
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Matching

Definition

A subset M C E of edges of a graph G = (V, E) is a called a matching if

no two edges in M are adjacent, that is, no two edges of M share a
common vertex.

Figure: Graph showing Matching

(IT Delhi) June 9, 2020  4/46



NSNS
To find a matching of maximum cardinality.
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Maximum matching problem

To find a matching of maximum cardinality.

Maximum matching problem is Polynomial Time solvable in general
graphs.?

?Edmonds, Jack. " Maximum matching and a polyhedron with 0, 1-vertices.” Journal of research of the National
Bureau of Standards B 69.125-130 (1965): 55-56.
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End points of a matching M are called M-saturated vertices.
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End points of a matching M are called M-saturated vertices.

A matching M is said to be an acyclic matching if the subgraph of G
induced by the M-saturated vertices of G, i.e. G[V (M)] is acyclic.
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Acyclic Matching

End points of a matching M are called M-saturated vertices.

Definition
A matching M is said to be an acyclic matching if the subgraph of G
induced by the M-saturated vertices of G, i.e. G|V (M)] is acyclic.

Figure: Graph showing Acyclic Matching
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Acyclic Matching

Definition
A matching M is said to be an acyclic matching if the subgraph of G
induced by the M-saturated vertices of G, i.e. G[V(M)] is acyclic.

Figure: Graph showing Acyclic Matching
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Acyclic Matching

Definition
A matching M is said to be an acyclic matching if the subgraph of G
induced by the M-saturated vertices of G, i.e. G[V(M)] is acyclic.

Figure: Graph showing Acyclic Matching
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To find an acyclic matching of maximum size.
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To find an acyclic matching of maximum size.

Max-Acy-Matching-Decide is NP-complete in general graphs.?

?Wayne Goddard, Sandra M Hedetniemi, Stephen T Hedetniemi, and Renu Laskar. Generalized
subgraph-restricted matchings in graphs. Discrete mathematics, 293(1):129-138, 2005.

<O «Fr < > QA



Known Results

— Max-Acy-Matching-Decide is NP-complete for
e Bipartite graphs. !
e Perfect elimination bipartite graphs. !

— Max-Acy-Matching problem is Polynomial time solvable for

e Bipartite permutation graphs. !

e Py-free graphs, 2Ps-free graphs. 2

e Chordal graphs. 3 (solved under the name of r-degenerate
matching)

— Characterization of graphs for which every maximum matching is
acyclic. 2

1B S Panda and Dinabandhu Pradhan. Acyclic matchings in subclasses of bipartite graphs. Discrete Mathematics,
Algorithms and Applications, 4(04):1250050, 2012.

2Maximilian Fiirst and Dieter Rautenbach. On some hard and some tractable cases of the maximum acyclic matching
problem. Annals of Operations Research, 279(1- 2):291-300, 2019.
3 Julien Baste and Dieter Rautenbach. Degenerate matchings and edge colorings. Discrete Applied Mathematics, 239:38-44,
2018.
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Our Results

Max-Acy-Matching-Decide is shown to be NP-complete for
e Comb-convex bipartite graphs
e Dually chordal graphs

Max-Acy-Matching problem is shown to be linear time solvable for
e Split graphs
e Proper interval graphs

e Max-Acy-Matching problem is hard to approximate within a ratio of
ni—¢ for any € > 0, unless P= NP

e Max-Acy-Matching problem is APX-complete for 2k + 1-regular graphs
for k > 3.
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Motivation

Chordal graphs
O(n")

Dually chordal graphs
NPC

N

Proper interval gmphal Strongly chordal graphs |

Split graphs
O(m +n) O(m +n) P

Bipartite graphs
NPC

Tree-convex bip. graphs
NPC

Triad-convex bip. graphs Star-convex bip. graphs

Comb-convex bip. graphs
NPC

No approximation results on Max-Acy-Matching problem are known.

(T Delhi) June 9, 2020

12/46



Our Results

Max-Acy-Matching-Decide is shown to be NP-complete for
e Comb-convex bipartite graphs
e Dually chordal graphs

Max-Acy-Matching problem is shown to be linear time solvable for
e Split graphs
e Proper interval graphs

e Max-Acy-Matching problem is hard to approximate within a ratio of
ni—¢ for any € > 0, unless P = NP.

e Max-Acy-Matching problem is APX-complete for 2k + 1-regular graphs
for k > 3.
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A comb is a graph obtained by attaching a pendant vertex (tooth) to
every vertex of a path (backbone).

v
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Definition

Comb

A comb is a graph obtained by attaching a pendant vertex (tooth) to
every vertex of a path (backbone).

)
Tl T2 .f3 I‘l T2 T3
T T2 x3 T r3
A B

Figure: Comb graph

(IT Delhi) June 9, 2020

14 /46



A bipartite graph G = (X,Y, E) is said to be tree-convex, if a tree
induces a subtree of T'.

T = (X, Ex) can be defined, such that for every vertex y in Y, the N(y)
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Comb-convex bipartite graph

Definition
A bipartite graph G = (X, Y, E) is said to be tree-convex, if a tree
T = (X, Ex) can be defined, such that for every vertex y in Y, the N(y)

induces a subtree of T.

Figure: Tree-convex bipartite graph
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Comb-convex bipartite graph

Definition
A bipartite graph G = (X, Y, E) is said to be tree-convex, if a tree
T = (X, Ex) can be defined, such that for every vertex y in Y, the N(y)

induces a subtree of T.

Figure: Tree-convex bipartite graph

If T"is a comb then G is called a comb-convex bipartite graph.

(T Delhi) June 9, 2020  15/46



graphs.

Max-Acy-Matching-Decide is NP-complete for comb-convex bipartite
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graphs.

Max-Acy-Matching-Decide is NP-complete for comb-convex bipartite

Max-Acy-Matching-Decide € NP.
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Comb-convex bipartite graphs (continued...)

Theorem

Max-Acy-Matching-Decide is NP-complete for comb-convex bipartite
graphs.

Outline of proof:
Max-Acy-Matching-Decide € NP.

Polynomial time reduction from Max-Acy-Matching-Decide for bipartite
graphs?.
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Comb-convex bipartite graphs (continued...)

Theorem

Max-Acy-Matching-Decide is NP-complete for comb-convex bipartite
graphs.

Outline of proof:
Max-Acy-Matching-Decide € NP.

Polynomial time reduction from Max-Acy-Matching-Decide for bipartite
graphs?.

Construct H = (Xp, Yy, Ef) from G = (X, Y, E) as follows:
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Comb-convex bipartite graphs (continued...)

Theorem

Max-Acy-Matching-Decide is NP-complete for comb-convex bipartite
graphs.

Outline of proof:
Max-Acy-Matching-Decide € NP.

Polynomial time reduction from Max-Acy-Matching-Decide for bipartite
graphs?.

Construct H = (Xp, Yy, Ef) from G = (X, Y, E) as follows:

Xpg=XUX' where X' ={a} |z;€ X}, Yy =Y,and Ey = EUF/,
where B/ = {2}y |z, € X" and y € Y'}.

2B S Panda and Dinabandhu Pradhan. Acyclic matchings in subclasses of bipartite graphs. Discrete
Mathematics, Algorithms and Applications, 4(04):1250050, 2012.
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Comb-convex bipartite graphs (continued...)

n

T3 . — Ys

Figure: Construction of H from G

(IT Delhi) June 9, 2020  17/46



Comb-convex bipartite graphs (continued...)

Figure: Construction of H from G

H is a comb-convex bipartite graph if X’ is taken as the backbone and X
is taken as the teeth of a comb C.
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Comb-convex bipartite graphs (continued...)

T3 . — Ys

Figure: Construction of H from G

H is a comb-convex bipartite graph if X’ is taken as the backbone and X
is taken as the teeth of a comb C.
Claim:

G has an acyclic matching of size > k < H has an acyclic matching of
size > k.
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Our Results

Max-Acy-Matching-Decide is shown to be NP-complete for
e Comb-convex bipartite graphs
e Dually chordal graphs

Max-Acy-Matching problem is shown to be linear time solvable for
e Split graphs
e Proper interval graphs

e Max-Acy-Matching problem is hard to approximate within a ratio of
ni—¢ for any € > 0, unless P = NP.

e Max-Acy-Matching problem is APX-complete for 2k + 1-regular graphs
for k > 3.
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Split graphs
A graph G = (V, E) is called a split graph if its vertex set V' can be

partitioned into two sets I and C such that I is an independent set and C
is a clique.
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Split graphs

A graph G = (V, E) is called a split graph if its vertex set V' can be
partitioned into two sets I and C such that I is an independent set and C
is a clique.

Figure: Split graph
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Split graphs

A graph G = (V, E) is called a split graph if its vertex set V' can be
partitioned into two sets I and C such that [ is an independent set and C
is a clique.

U6 v7

Figure: Split graph
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Let G be a split graph. If M is an acyclic matching in GG, then
1< |M| <2
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Let G be a split graph. If M is an acyclic matching in GG, then
1< |M| <2

o Let {a1b1,azbs, asbs} C M for some a;,b; € V, 1 <1< 3.
«0O» «Fr «=» « Q>
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Let G be a split graph. If M is an acyclic matching in GG, then
1< |M| <2

o Let {a1b1,azbs, asbs} C M for some a;,b; € V, 1 <1< 3.
e [ is an independent set — by, by, b3 € C.
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1< |M|<2.

Let G be a split graph. If M is an acyclic matching in GG, then

o Let {a1b1,azbs, asbs} C M for some a;,b; € V, 1 <1< 3.
e [ is an independent set — by, by, b3 € C.
e G[{b1,b2,bs3}] forms a cycle.
<O (@ < Er < Er E DHAX
-~ WTDeh) . June9 2020 21/46




Max-Acy-Matching in split graphs

Lemma
Let G be a split graph. If M is an acyclic matching in GG, then
1< |M|<2.

Outline of proof.

o Let {albl,azbg,a?,bg} C M for some a;,b; eV, 1<1<3.
e [ is an independent set — by, by, b3 € C.

e G[{b1,b2,bs3}] forms a cycle.

CONTRADICTION!!
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Max-Acy-Matching in split graphs

Lemma
Let G be a split graph. If M is an acyclic matching in GG, then
1< |M|<2.

Outline of proof.

o Let {albl,azbg,a?,bg} C M for some a;,b; eV, 1<1<3.
e [ is an independent set — by, by, b3 € C.

e G[{b1,b2,bs3}] forms a cycle.

CONTRADICTION!!

eThus, M| < 2.
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Let G be a split graph and let M be a max-acy-matching in G.
Then, |M| = 2 & there exist a pair of vertices v;,v; € I s.t.
N(vi) \ N(vj) # 0 and N(v;) \ N(vi) # 0.
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Max-Acy-Matching in split graphs (continued...)

Lemma

Let G be a split graph and let M be a max-acy-matching in G.
Then, |M| = 2 < there exist a pair of vertices v;,v; € I s.t.

N(w:) \ N(vj) # 0 and N(v) \ N(v;) # 0.

Outline of proof.

= Let M = {aibi,ajbj}.

Let ai,a; € C and bi,bj el

Since G[{a;,a;, b;,b;}] is acyclic and a;b;, a;b;, a;a; € E.
SO, a; §é N(bj) and Qj ¢ N(bl)

Hence, b;,b; € I is the required pair of vertices.

(IT Delhi) June 9, 2020
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Max-Acy-Matching in split graphs (continued...)

Lemma

Let G = (V, E) be a split graph and let M be a maximum acyclic
matching in G. Then, |M| = 2 if and only if there exist a pair of vertices
v;,vj € I such that N(v;) \ N(v;) # 0 and N(v;) \ N(v;) # 0.

Outline of proof.

< Let vy,v9 € I s.t. N(’Ul) \N(UQ) 7’5 ¢ and N(UQ) \ N(’Ul) 7'5 ¢.
Let ¢c; € N(v1) \ N(v2) and ¢3 € N(v2) \ N(v1).

Define M = {vyc1,v2c2}.
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A split graph G = (V, E) is called a threshold graph if the vertices in I
can be linearly ordered, say (vi,va,...v|y), such that
N(v1) € N(v2) € ... € N(vp).
«0O> «Fr «=)r» «=) = Q>
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Max-Acy-Matching in split graphs (continued...)

Definition

A split graph G = (V, E) is called a threshold graph if the vertices in I
can be linearly ordered, say (vi,va,...v)), such that

N(’Ul) g N(’Ug) g 50 g N('Um)

Theorem
Let G = (V, E) be a split graph and let M be a max-acy-matching in G.
Then, |M| =1 < G is a threshold graph.
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Our Results

Max-Acy-Matching-Decide is shown to be NP-complete for
e Comb-convex bipartite graphs
e Dually chordal graphs

Max-Acy-Matching problem is shown to be linear time solvable for
e Split graphs
e Proper interval graphs

e Max-Acy-Matching problem is hard to approximate within a ratio of
nl=¢ for any € > 0, unless P = NP.

e Max-Acy-Matching problem is APX-complete for 2k + 1-regular graphs
for k > 3.
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Mac(G) < /L(G)
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polynomial time.

Max-Acy-Matching problem can be approximated within a factor of n in

v
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polynomial time.

Max-Acy-Matching problem can be approximated within a factor of n in

Max-Acy-Matching problem cannot be approximated within a factor of
n'=¢ for any € > 0, unless P = NP.
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Approximation hardness (continued...)

Theorem MAX-IS

The Max-Ind-Set problem for a graph G cannot be approximated within a
factor of n!=¢ for any € > 0, unless P = NP. 2

?David Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic number. In
Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pages 681-690, 2006.
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Given: G = (V, E), an instance of the Max-Ind-Set problem.
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Given: G = (V, E), an instance of the Max-Ind-Set problem.
Construct: H = (Vy, Ex), an instance of the Max-Acy-Matching
problem.
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Approximation hardness (continued...)

Construction A:

Given: G = (V, E), an instance of the Max-Ind-Set problem.
Construct: H = (V, E), an instance of the Max-Acy-Matching
problem.

o Vg =V UV’ where V' = {v} | v; € V}.

o By =EU{vy; |1 <i<n}U{vw)|vv; € E}U{vjv; | viv; € E}.
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Approximation hardness (continued...)

Construction A:

Given: G = (V, E), an instance of the Max-Ind-Set problem.
Construct: H = (V, E), an instance of the Max-Acy-Matching
problem.

o Vg =V UV’ where V' = {v} | v; € V}.

o By =EU{vy; |1 <i<n}U{vw)|vv; € E}U{vjv; | viv; € E}.

U1 U2 U3 Vg
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Approximation hardness (continued...)

Construction A:

Given: G = (V, E), an instance of the Max-Ind-Set problem.
Construct: H = (Vy, Eg), an instance of the Max-Acy-Matching
problem.

o Vg =V UV’ where V! ={v] | v; € V}.

o By = EU{vv;|1<i<n}U{vy;|vv; € E}U{viv;|viv; € E}.

1 1
1 ) 1
| U1 U2 U3 vs |V
I I
>—0—0—o @ @ L ® |
vy Vo V3 V4 e e
1 1
| o
! / / " M | v
1 vy Vg v3 (A
1 1
G H
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Approximation hardness (continued...)

Construction A:
Given: G = (V, E), an instance of the Max-Ind-Set problem.
Construct: H = (Vy, Ep), an instance of the Max-Acy-Matching
problem.
e Vg =V UV’ where V' ={v] | v; € V}.
o By =EU{vivi|1<i<n}u{vw}|vv; € E}U{vv; | vv; € E}.

A%
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Approximation hardness (continued...)

Construction A:

Given: G = (V, E), an instance of the Max-Ind-Set problem.
Construct: H = (Vy, Eg), an instance of the Max-Acy-Matching
problem.

o Vg =V UV’ where V! ={v] | v; € V}.

o By =EU{vy;|1<i<n}tu{viv|vivy € E}U{vjv; [ viv; € E}.

AV
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> k.

G has an independent set of size > k < H has an acy-matching of size
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Types of Edges:

@ Type-I ={vv)|v;, €V and v, € V'}.
Q Type-11 = {vv; | vi,v; € V'}.
© Type-I1T = {vivj | v € V' and v; € V'}.

vy Vo v3 vy
@l
U1 U2 u3 U4
) ) ) )
vl vl vy vy
G H
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Type-11 only.

There exists a max-acy-matching in H containing edges of Type-I and

v
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There exists a max-acy-matching in H containing edges of Type-I and
Type-11 only.

Type-1V edge — Type-111 edge — Type-11 edge

AV — vv; or (vjvg)  — vY;

40> «F>» «=)» 4 Q>
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Approximation hardness (continued...)

Lemma 1

There exists a max-acy-matching in H containing edges of Type-I and
Type-11I only.

Outline of proof:

o Let vjv; € M. (vjvj is of Type-IV'.)

e M is acyclic = both v; and v; are unsaturated by M.
o Let M’ = (M \ {vjv;}) U {vjv;}.

e Assume that G[Vi(M')] contains a cycle C'.

e (' must contain the vertex v;.

o Let vjug, vjup € E(C). Since N{v;] = N[v}], vjua, viup € Ef. Now,

J
C" = (C\ {vjuq, viup}) U {vjuq, viup} is a cycle in G[Vy (M)).
CONTRADICTION!

(IIT Delhi) June 9, 2020
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There exists a max-acy-matching in H containing edges of T'ype-I only.




There exists a max-acy-matching in H containing edges of T'ype-I only.

Recall: Type-I = {v;v} | v; €V and v] € V'},,
Type-11 = {vv; | vi,v; € V'}.




Approximation hardness (continued...)

Lemma 2

There exists a max-acy-matching in H containing edges of Type-1 only.

Outline of proof:

Recall: T'ype-I = {v;v] | v; € V and v} € V'}.,

Type-1I = {v;v; | v;,v; € V}.

In G[Vi(M)], edges of T'ype-I will form a disjoint union of K)s and
edges of T'ype-11 will form a forest.
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Approximation hardness (continued...)

Lemma 2

There exists a max-acy-matching in H containing edges of Type-I only.

Outline of proof:

Recall: T'ype-I = {v;v] | v; € V and v} € V'}.,

Type-1I = {v;v; | v;,v; € V}.

In G[Vi(M)], edges of T'ype-I will form a disjoint union of K)s and
edges of T'ype-11 will form a forest.

3 pendant edge of T'ype-11 (say vquvp) in G|V (M)].
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Approximation hardness (continued...)

Lemma 2

There exists a max-acy-matching in H containing edges of Type-I only.

Outline of proof:

Recall: T'ype-I = {v;v] | v; € V and v} € V'}.,

Type-1I = {v;v; | v;,v; € V}.

In G[Vi(M)], edges of T'ype-I will form a disjoint union of K)s and
edges of T'ype-11 will form a forest.

3 pendant edge of T'ype-11 (say vquvp) in G|V (M)].

Let d(vp) = 1 in G|V (M)].

(IT Delhi) June 9, 2020
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Approximation hardness (continued...)

Lemma 2

There exists a max-acy-matching in H containing edges of Type-1 only.

Outline of proof:

Recall: T'ype-I = {v;v] | v; € V and v} € V'}.,

Type-11I = {v;v; | v;,v; € V}.

In G[Vi(M)], edges of T'ype-I will form a disjoint union of K)s and
edges of T'ype-11 will form a forest.

3 pendant edge of T'ype-11 (say vquvp) in G|V (M)].

Let d(vp) = 1 in G|V (M)].

Claim: M’ = (M \ {vqup}) U {wvpvy} is an acyclic matching in H.
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Approximation hardness (continued...)

Lemma 2

There exists a max-acy-matching in H containing edges of Type-1 only.

Outline of proof:

Recall: T'ype-I = {v;v] | v; € V and v} € V'}.,

Type-11I = {v;v; | v;,v; € V}.

In G[Vi(M)], edges of T'ype-I will form a disjoint union of K)s and
edges of T'ype-11 will form a forest.

3 pendant edge of T'ype-11 (say vquvp) in G|V (M)].

Let d(vp) = 1 in G|V (M)].

Claim: M’ = (M \ {vqup}) U {wvpvy} is an acyclic matching in H.

If M’ is not acyclic = G[Vg(M')] contains a cycle C.
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36 /46



Approximation hardness (continued...)

Lemma 2

There exists a max-acy-matching in H containing edges of Type-1 only.

Outline of proof:

Recall: T'ype-I = {v;v] | v; € V and v} € V'}.,

Type-11I = {v;v; | v;,v; € V}.

In G[Vi(M)], edges of T'ype-I will form a disjoint union of K)s and
edges of T'ype-11 will form a forest.

3 pendant edge of T'ype-11 (say vquvp) in G|V (M)].

Let d(vp) = 1 in G|V (M)].

Claim: M’ = (M \ {vqup}) U {wvpvy} is an acyclic matching in H.

If M’ is not acyclic = G[Vg(M')] contains a cycle C.

C must contain the vertex v}.
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Approximation hardness (continued...)

Lemma 2
There exists a max-acy-matching in H containing edges of Type-1 only.

Outline of proof:

Recall: T'ype-I = {v;v] | v; € V and v} € V'}.,

Type-11I = {v;v; | v;,v; € V}.

In G[Vi(M)], edges of T'ype-I will form a disjoint union of K)s and
edges of T'ype-11 will form a forest.

3 pendant edge of T'ype-11 (say vquvp) in G|V (M)].

Let d(vp) = 1 in G|V (M)].

Claim: M’ = (M \ {vqup}) U {wvpvy} is an acyclic matching in H.

If M’ is not acyclic = G[Vg(M')] contains a cycle C.

C must contain the vertex v;. Let v,v;, vv; € E(C) for some v;,vj € V.
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Approximation hardness (continued...)

Lemma 2
There exists a max-acy-matching in H containing edges of Type-1 only.

Outline of proof:

Recall: Type-I = {v;v} | v; € V and v} € V'},,

Type-11I = {v;v; | v;,v; € V}.

In G[Vi(M)], edges of T'ype-I will form a disjoint union of K)s and
edges of T'ype-11 will form a forest.

3 pendant edge of T'ype-11 (say vquvp) in G|V (M)].

Let d(vp) = 1 in G|V (M)].

Claim: M’ = (M \ {vqup}) U {wvpvy} is an acyclic matching in H.

If M’ is not acyclic = G[Vg(M')] contains a cycle C.

C must contain the vertex v;. Let v,v;, vv; € E(C) for some v;,vj € V.
Since N{wy] = Nuvy], vpvs, vpv; € Egr implying that d(vp) > 2 in
G[Vu(M")].
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> k.

G has an independent set of size > k < H has an acy-matching of size
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Approximation hardness (continued...)

Lemma 3

G has an independent set of size > k < H has an acy-matching of size
> k.

Outline of proof:

= Let I = {v1,v9,...,v;} be an independent set in G of size > k.
Define M = {v1v], v205, ..., vv)} in H.
< Let M = {ej,eq,...,e;} be an acyclic matching in H of size at least k.

By Lemma 2, there exists a matching M’ such that |M'| = |M| and M’
has edges of Type-I only.
Define a set I = {v; | vjv} € M'}.
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Approximation hardness (continued...)

Lemma 3

G has an independent set of size > k < H has an acy-matching of size
> k.

Outline of proof:

= Let I = {v1,v9,...,v;} be an independent set in G of size > k.
Define M = {v1v], v205, ..., vv)} in H.
< Let M = {ej,eq,...,e;} be an acyclic matching in H of size at least k.

By Lemma 2, there exists a matching M’ such that |M'| = |M| and M’

has edges of Type-I only.
Define a set I = {v; | vjv} € M'}.

Corollary 1

G has a maximum independent set of size k¥ < H has a maximum acyclic
matching of size k.
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I*= maximum independent set in G.

M*= maximum acyclic matching in H.

Max-Acy-Matching problem can be approximated within a ratio oo > 1 by
using an algorithm ALG, where o = ' ~¢ for some fixed € > 0.

Here, n = |Vy|. I
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|M*(H)| < a|Marc(H)|. (By Assumption)
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|M*(H)| < a|Marc(H)|. (By Assumption)
|[I*(G)| = |M*(H)|. (By Corollary 1)
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Outline of the Proof(continued):
|M*(H)| < a|Mapc(H)|- (By Assumption)
|[I*(G)| = |[M*(H)|. (By Corollary 1)

There exists I41c(G) such that |Marg(H)| = [Iarc(G)|. (By Lemma 3)
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Outline of the Proof(continued):
|M*(H)| < a|Mapa(H)|. (By Assumption)
[I*(G)| = [M*(H)|. (By Corollary 1)
There exists I41c(G) such that |Marg(H)| = [Iarc(G)|. (By Lemma 3)

Hence; |I*(G/)| < allarg(G)| = ﬁ1_€/|IALg(G)| = (2n)1_6/|IALg(G)| =
2)'(n)'" ara(G)|.
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Hence, [1*(G)| < a|larc(G)] = 79 |Lara(G)] = (20)1 | Lara(G)| =
(2)' 7 (n)' " Lara(@)].

If we choose ¢, such that 21¢ < n€=¢, then
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Theorem Max-IS.
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Outline of the Proof(continued):
|M*(H)| < a|Mapa(H)|. (By Assumption)
[I*(G)| = [M*(H)|. (By Corollary 1)
There exists I41c(G) such that |Marg(H)| = [Iarc(G)|. (By Lemma 3)

Hence, [1*(G)| < a|larc(G)] = 79 |Lara(G)] = (20)1 | Lara(G)| =
(2)' 7 (n)' " Lara(@)].

If we choose ¢, such that 21¢ < n€=¢, then
()| < (n)~(n)'" Hara(G)| = (n)' | Larc(G)|.

Hence, |I*(G)| < (n)'=¢|I41c(G)|, which leads to a contradiction to
Theorem Max-IS.

Therefore, the Max-Acy-Matching problem cannot be approximated within
a factor of n!=¢ for any € > 0, unless P = NP.
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APX-completeness

Lemma 4
The Max-Acy-Matching problem for a k-regular graph G can be
approximated with an approximation ratio of Qk(k;kl“ where k is a

constant.

Outline of proof:

Pick an edge in M,. and remove its end points
In each step, we are removing at most k? edges.

kn
So, 2k (k— 1 +1] < [Macl.
Also, prge < %
2k(k—1)+1
Hence, M‘ﬁ[‘“’| § k(kk )+
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APX-completeness (continued...)

Theorem

2 b The Max-Ind-Set problem is APX-complete for k-regular graphs for
k> 3.

?Paola Alimonti and Viggo Kann. Some apx-completeness results for cubic graphs. Theoretical Computer
Science, 237(1-2):123-134, 2000

bChristos H Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and complexity classes.
Journal of computer and system sciences, 43(3):425-440, 1991.

Observation

If G is a k-regular graph in Construction A, then the constructed graph H
is a 2k + 1-regular graph for k > 3.
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The Max-Acy-Matching problem is APX-complete for 2k + 1-regular
graphs for k > 3, where k is a constant.

«0O>» «Fr «=» < Q>

it
-



APX-completeness (continued...)

Theorem

The Max-Acy-Matching problem is APX-complete for 2k + 1-regular
graphs for k£ > 3, where k is a constant.

Outline of proof:

The Max-Acy-Matching problem for 2k + 1-regular graphs for k > 3
belongs to APX by Lemma 4.
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APX-completeness (continued...)

Theorem

The Max-Acy-Matching problem is APX-complete for 2k + 1-regular
graphs for k£ > 3, where k is a constant.

Outline of proof:

The Max-Acy-Matching problem for 2k + 1-regular graphs for k > 3
belongs to APX by Lemma 4.
Given a k-regular graph G = (V, E), where V = {v1,vq,...,0,}.
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APX-completeness (continued...)

Theorem

The Max-Acy-Matching problem is APX-complete for 2k + 1-regular
graphs for k£ > 3, where k is a constant.

Outline of proof:

The Max-Acy-Matching problem for 2k + 1-regular graphs for k > 3
belongs to APX by Lemma 4.

Given a k-regular graph G = (V, E), where V = {v1,vq,...,0,}.
Construct a graph H = (Vy, Eg), an instance of the Max-Acy-Matching
problem by Construction A.
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APX-completeness (continued...)

Theorem

The Max-Acy-Matching problem is APX-complete for 2k + 1-regular
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Given a k-regular graph G = (V, E), where V = {v1,vq,...,0,}.
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problem by Construction A.

By Lemma 3 and Corollary 1, the reduction described in Construction A is
an L-reduction with o =1 and 8 = 1.
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APX-completeness (continued...)

Theorem

The Max-Acy-Matching problem is APX-complete for 2k + 1-regular
graphs for k£ > 3, where k is a constant.

Outline of proof:

The Max-Acy-Matching problem for 2k + 1-regular graphs for k > 3
belongs to APX by Lemma 4.

Given a k-regular graph G = (V, E), where V = {v1,vq,...,0,}.
Construct a graph H = (Vy, Eg), an instance of the Max-Acy-Matching
problem by Construction A.

By Lemma 3 and Corollary 1, the reduction described in Construction A is
an L-reduction with o =1 and 8 = 1.

Hence, proved.
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e Better approximation algorithms for bipartite graphs.
e Parameterized complexity.
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Thank You!!

Questions??
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