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Warm-up definitions

Subcubic graphs → graphs with maximum degree 3;

Simple graphs (although parallel edges are not problematic);

Distance between edges → distance between the
corresponding vertices in the line graph
(adjacent edges are at distance 1);

a b c

d(a, b) = 1 and d(a, c) = 2
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Proper edge-coloring

Adjacent edges receive distinct colors;

Edges of every color form a matching;

The smallest k for which a graph G admits an edge-coloring
with k colors is the chromatic index of G , χ′(G );

By Vizing’s theorem, for every subcubic graph G it holds

3 ≤ χ′(G ) ≤ 4
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Strong edge-coloring

Edges at distance at most 2 receive distinct colors;

Edges of every color form an induced matching,
i.e. the graph induced on the endvertices is a matching;

The smallest k for which a graph G admits an edge-coloring
with k colors is the strong chromatic index of G , χ′

s(G );

Andersen (1992), and Horák, Qing, and Trotter (1993) proved
that for every subcubic graph G it holds

χ′
s(G ) ≤ 10
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Packings

A set of edges is a k-packing if every pair of edges is at
distance at least k + 1;

Hence, every matching is 1-packing and every induced
matching is a 2-packing;

For a non-decreasing sequence of positive integers,
S = (s1, . . . , s`), Gastineau and Togni (2019), defined an
S-packing edge-coloring of G as a partition of the edge set
of G into ` subsets {X1, . . . ,X`} such that each Xi is an
si -packing;

The notion of packing colorings is derived from its vertex
analogues introduced by W. Goddard, S. M. Hedetniemi, S.
T. Hedetniemi, J. M. Harris and D. F. Rall (2008), and
Goddard and Xu (2012);
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Example

Consider the following cubic graph with χ′
s = 10:

This graph is (1, 1, 2, 2)-packing edge-colorable;
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Today’s focus

For S = (s1, . . . , s`), we are interested in S-packing
edge-colorings with si ∈ {1, 2} for a given number of 1’s;

We abbreviate (1, . . . , 1︸ ︷︷ ︸
p

, 2, . . . , 2︸ ︷︷ ︸
q

) as (1p, 2q);

By Vizing (also Brooks):
Every subcubic graph admits a (1, 1, 1, 1)-packing
edge-coloring.

By Andersen and Horák, Qing and Trotter:
Every subcubic graph admits a (210)-packing edge-coloring.

What is in between and what is open?
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(1, 1, 1, 2)-packing edge-coloring

The fourth color, call it δ, in a proper edge-coloring of
subcubic graphs is rare;

Albertson and Haas (1996):
If G is cubic, at most 2

15 edges are colored with δ.

Steffen (2004):
The Petersen graph is the only bridgeless cubic graph such
that all four colors must have at least 2

15 edges.

Fouquet and Vanherpe (2013):
For any subcubic graph, less than 2

15 edges are colored with δ,
except for three graphs.

As a side product...

9/26



(1, 1, 1, 2)-packing edge-coloring

Fouquet and Vanherpe (2013) and Payan (1977):
Every subcubic graph admits a (1, 1, 1, 2)-packing
edge-coloring.

Here the 2-packing cannot be replaced by a 3-packing, due to
the Petersen and the Tietze graphs.

Conjecture 1 (Gastineau and Togni)

Every cubic graph different from the Petersen and the Tietze graph
is (1, 1, 1, 3)-packing edge-colorable.
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(1, 1, 2k)-packing edge-coloring

Trivial: k ≥ 6
Take a (1, 1, 1, 2)-packing edge-coloring of G and
replace one 1-packing with five 2-packings;
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(1, 1, 2k)-packing edge-coloring

Showing there is a 1-packing A in a (1, 1, 1, 2)-packing
edge-coloring such that no five edges of A are pairwise at
distance 2, Gastineau and Togni (2019) proved:
Every bridgeless cubic graph admits a (1, 1, 25)-packing
edge-coloring.

Hocquard, L and Lužar (2019+):
Every subcubic graph admits a (1, 1, 25)-packing
edge-coloring.
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(1, 1, 2k)-packing edge-coloring

There are graph(s) that do not admit a (1, 1, 23)-packing
edge-coloring;

Conjecture 2 (Gastineau and Togni)

Every subcubic graph is (1, 1, 24)-packing edge-colorable.

The conjecture is supported by checking all bridgeless
subcubic graphs on at most 17 vertices;

Is K3,3 with a subdivided edge the only bridgeless subcubic
graph needing four 2-packings?
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(1, 2k)-packing edge-coloring

Trivial: k ≥ 9
By the strong edge-coloring result;

Hocquard, L and Lužar (2019+):
Every subcubic graph admits a (1, 28)-packing edge-coloring.

Proof idea: a good-(1, 28)-packing edge-coloring is a
(1, 28)-packing edge-coloring where vertices of degree 2 do
not receive the color α (= the 1-packing).

1 2
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(1, 2k)-packing edge-coloring

There are graph(s) that do not admit a (1, 26)-packing
edge-coloring;

Gastineau and Togni asked, and we conjecture the following:

Conjecture 3 (Hocquard, L and Lužar (2019+))

Every subcubic graph is (1, 27)-packing edge-colorable.

The conjecture is supported by checking all bridgeless
subcubic graphs on at most 17 vertices;
Is K3,3 with a subdivided edge the only bridgeless subcubic
graph needing seven 2-packings?
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Why is it interesting?



How are they connected?

The (conjectured) bounds series:

(1, 1, 1, 2) (1, 1, 24) (1, 27) (210)

It seems that we can always “replace” a 1-packing with three
2-packings;

Note that the other 1-packings cannot stay fixed in general.
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Adding constraints:
Class I graphs



Class I graphs

By definition:
Subcubic class I graphs are (1, 1, 1)-packing edge-colorable;

Hocquard, L and Lužar (2019+):
Every subcubic class I graph admits a (1, 1, 24)-packing
edge-coloring.

Hocquard, L and Lužar (2019+):
Every subcubic class I graph admits a (1, 27)-packing
edge-coloring.

By Andersen and Horák, Qing, and Trotter:
Every subcubic class I graph admits a (210)-packing
edge-coloring.
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Class I graphs

Conjecture 4 (Gastineau and Togni)

Every subcubic class I graph is (1, 1, 23)-packing edge-colorable.

Conjecture 5 (Hocquard, L and Lužar (2019+))

Every subcubic class I graph is (1, 26)-packing edge-colorable.

Both conjectures, if true, are tight, due to K3,3;
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Proof ideas of (1, 27) for class I

The colors are α, 1, 2, 3, 4, 5, 6, 7.

Fix a (13)-coloring of a minimal counter-example G and α is
one of those colors, the other two are blue.

G is cubic of girth at least 5.

G has no chordless blue cycles.

G has no blue cycles.

Tools:

Local modifications to reduce the graph.

Combinatorial Nullstellensatz to color some paths and cycles.
I.e if some well chosen polynomial P has a particular
monomial with a non zero coefficient then our structure is
strongly edge-choosable with lists L1, . . . , Lk .
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Summary



Summary

(13, 2a) (12, 2b) (1, 2c) (2d)

general 1 ≤ a ≤ 1 4 ≤ b ≤ 5 7 ≤ c ≤ 8 10 ≤ d ≤ 10

class I 0 ≤ a ≤ 0 3 ≤ b ≤ 4 6 ≤ c ≤ 7 10 ≤ d ≤ 10

red color - only a finitely many known examples of bridgeless
graphs attaining the bound;

blue color - resolved completely;
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Thank you for your attention!
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