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Overview

We use a tool called MathCheck (based on satisfiability solvers and
computer algebra) to generate certificates proving the nonexistence
of ovals in Lam’s problem from projective geometry.
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SAT:
Boolean satisfiability problem
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Effectiveness of SAT solvers

Surprisingly, many problems that have nothing to do with logic can
be effectively solved by translating them into Boolean logic and
using a SAT solver:

I Discrete optimization
I Hardware and software verification
I Proving/disproving conjectures

Additionally, SAT solvers produce unsatisfiability certificates when
no solutions exist.
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CAS:
Computer algebra system
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Effectiveness of CASs
Computer algebra systems can perform calculations and
manipulate expressions from many branches of mathematics:

I Determining if graphs are isomorphic
I Row reducing a matrix
I Detecting symmetries of combinatorial objects
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For example, the symmetry group of this graph has generators
(2 5), (3 8)(4 7), and (1 2)(3 4)(5 6)(7 8).
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SAT + CAS

Search + Math
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MathCheck: A SAT+CAS system
We’ve used MathCheck to explicitly construct examples (or to
produce nonexistence certificates) of combinatorial objects like
Hadamard matrices.
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Lam’s Problem and
Projective Geometry
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History

Since 300 BC, mathematicians tried to derive Euclid’s “parallel
postulate” from his first four postulates for geometry.

The existence of projective geometries shows this is impossible!
These geometries satisfy a “projective axiom” that any two lines
meet in a unique point.
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Finite geometries

A geometry is finite if it contains a finite number of points.

All finite projective geometries have been classified except for those
with two dimensions (the projective planes).
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Projective plane of order 2

A projective plane is of order n if all lines contain n + 1 points.
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Projective plane of order 3
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Lam’s problem

The first order for which it is theoretically uncertain if projective
planes exist is n = 10.

The structure of ovals is likely to be important to the
attempt to settle the case 10 existence question. . .

D. W. Erbach (1976)
The non-existence of a

certain finite projective plane
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Ovals

An oval is a set of points such that no three lie on the same line
and is of the largest possible size: n + 2 points (even orders n) or
n + 1 points (odd orders n).

All known projective planes contain ovals.
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Ovals in order 10

Recently the search was finally finished without finding
such a structure . . . we are confident that there are no
ovals in a plane of order 10.

Lam, Thiel, Swiercz, McKay (1983)

Left to right: Swiercz, McKay, Lam, Thiel 16/37



Verification

Their search used custom-written software run once on a single
piece of hardware. We must simply trust that it ran to completion.

Lam et al. requested an independent search to verify the result.
Apparently this had never been done.
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Nonexistence Certificates
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Nonexistence certificates

We provide certificates that an independent party can use to verify
Lam et al.’s nonexistence result.

The certificates rely on an encoding of the existence problem into
Boolean logic.
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Incidence matrices

1 1 0 1 0 0 00
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1

Boolean matrix where (i , j)th entry is 1 exactly when the ith line
contains the jth point.

SAT encoding: false ≡ 0, true ≡ 1
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Starting structure

Suppose an oval in a projective plane of order ten exists and
consists of its first twelve points.

Each pair of points in the oval define a unique line, and therefore
there are

(12
2

)
= 66 lines incident to the oval.
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Lexicographically ordering the first 66 rows. . .
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The first line must contain another nine points. . .
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The lines 2–21 cannot intersect the first line again. . .
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Similarly, each of the lines 2–11 contain nine more points. . .
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SAT constraints

How should the projective axiom be encoded in Boolean logic?

Any two lines meet exactly once, therefore:
1. Any two lines meet at most once.
2. Any two lines meet at least once.
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1. Lines meet at most once

In this case the entries a, b, c , d cannot all be simultaneously true:

→

→

...

a b

c d
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1. Lines meet at most once

In this case the entries a, b, c , d cannot all be simultaneously true:

→

→

...

a b

c d

In Boolean logic:
¬a ∨ ¬b ∨ ¬c ∨ ¬d
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2. Lines meet at least once

In this case at least one entry a–i must be true:

→

→

...

a b c d e f g h i
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2. Lines meet at least once

In this case at least one entry a–i must be true:

→

→

...

a b c d e f g h i

In Boolean logic:
a ∨ b ∨ c ∨ d ∨ e ∨ f ∨ h ∨ i
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SAT instance

A SAT instance is generated using the entries in this matrix:
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Size of the search

There are over 1014 possible ways of completing the entries in each
of the five blocks below:

However, up to permuting the rows and columns there are only
396 ways of filling in the entries of the first block.
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Symmetry blocking

The completions of a block are given a tag in {1, . . . , 396} using
the symbolic computation library nauty.

Without loss of generality we suppose the first block’s tag is
smaller than the tags of the other blocks. We use a SAT+CAS
solver that learns this on-the-fly.
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Learning method

Suppose B2 is a completion of the second block.

SAT solver nauty
B2

If the tag of B2 is smaller than the tag of the first block. . .

. . . a “symmetry blocking clause” is learned.
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Results

As the tag of the first block increases the SAT instances become
easier due to symmetry blocking. . .
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Completions
The solver’s exhaustive search found 58 five-block completions.
For example:

None of the completions can be extended to a sixth block.
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Certificates

The certificates generated by the SAT solver totalled 33 TiB (and
3 TiB compressed).

To believe this nonexistence result you now need to trust:
I Our SAT encoding and script to generate the SAT instances.
I The proof verifier DRAT-trim.
I The symmetry blocking clauses (whose correctness relies on

nauty).
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Ongoing work

By solving several other cases we now have a complete SAT-based
resolution of Lam’s problem—verifying that projective planes of
order ten do not exist.

For more detail on the other cases, see:

A Nonexistence Certificate for Projective Planes of Order Ten with
Weight 15 Codewords. AAECC 2020.

Unsatisfiability Proofs for Weight 16 Codewords in Lam’s Problem.
To appear at IJCAI 2020.
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Conclusion

The SAT+CAS paradigm is an effective way of searching for
combinatorial objects or disproving their existence.

Wide application: Many mathematical problems stand to benefit
from fast, powerful, and verifiable search tools.

Bang for your buck: Requires some knowledge of SAT and CAS,
but avoids using special-purpose search code.

Thank you!
curtisbright.com
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